Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 03

View Issue TOC
Volume 22, No. 3
Pages 216 - 225

OpenAccess

Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders: Prospects for a Global Array

By Kenneth S. Johnson , William M. Berelson, Emmanuel S. Boss, Zanna Chase, Hervé Claustre, Steven R. Emerson, Nicolas Gruber, Arne Körtzinger, Mary Jane Perry, and Stephen C. Riser 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Chemical and biological sensor technologies have advanced rapidly in the past five years. Sensors that require low power and operate for multiple years are now available for oxygen, nitrate, and a variety of bio-optical properties that serve as proxies for important components of the carbon cycle (e.g., particulate organic carbon). These sensors have all been deployed successfully for long periods, in some cases more than three years, on platforms such as profiling floats or gliders. Technologies for pH, pCO2, and particulate inorganic carbon are maturing rapidly as well. These sensors could serve as the enabling technology for a global biogeochemical observing system that might operate on a scale comparable to the current Argo array. Here, we review the scientific motivation and the prospects for a global observing system for ocean biogeochemistry.

Citation

Johnson, K.S., W.M. Berelson, E.S. Boss, Z. Chase, H. Claustre, S.R. Emerson, N. Gruber, A. Körtzinger, M.J. Perry, and S.C. Riser. 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders: Prospects for a global array. Oceanography 22(3):216–225, https://doi.org/10.5670/oceanog.2009.81.

References
    Altabet, M.A., M.J. Higginson, and D.W. Murray. 2002. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415:159–162.
  1. Banks, H.T., R.A. Wood, J.M. Gregory, T.C. Johns, and G.S. Jones. 2000. Are observed decadal changes in the intermediate water masses a signature of anthropogenic climate change? Geophysical Research Letters 27:2,961–2,964.
  2. Bishop, J.K.B. 2009. Autonomous observations of the ocean biological carbon pump. Oceanography 22(2):182–193.
  3. Bishop, J.K.B., and T.J. Wood. 2009. Year-round observations of carbon biomass and flux variability in the Southern Ocean. Global Biogeochemical Cycles 23, GB2019, doi:10.1029/2008GB003206.
  4. Bishop, J.K.B., R.E. Davis, and J.T. Sherman. 2002. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298: 817–821.
  5. Bishop, J.K.B., T.J. Wood, R.E. Davis, and J.T. Sherman. 2004. Robotic observations of enhanced carbon biomass and export at 55°S. Science 304:417–420.
  6. Boss, E., D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M.J. Perry, and P.G. Strutton. 2008. Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite. Limnology and Oceanography 53:2,112–2,122.
  7. Brasseur, P., N. Gruber, R. Barciela, K. Brander, M. Doron, A. El Moussaoui, A.J. Hobday, M. Huret, A.-S. Kremeur, P. Lehodey, and others. 2009. Integrating biogeochemistry and ecology into ocean data assimilation systems. Oceanography 22(3):206–215.
  8. Claustre, H., Y. Huot, I. Obernosterer, B. Gentili, D. Tailliez, and M.R. Lewis. 2008. Gross community production and metabolic balance in the South Pacific Gyre, using a non intrusive bio-optical method. Biogeosciences 4:463–474.
  9. D’Asaro, E.A., and C.L. McNeil. 2007. Air-sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. Journal of Marine Systems 66:92–109.
  10. D’Asaro, E.A., C. Lee, M. Perry, K. Fennel, E. Rehm, A. Gray, N. Briggs, and K. Gudmundsson. 2008. The 2008 North Atlantic Spring Bloom Experiment I: Overview and strategy. Eos, Transactions, American Geophysical Union 89(53), Fall Meeting Supplement, Abstract OS24A-08.
  11. Ducklow, H.W., D.K. Steinberg, and K.O. Buesseler. 2001. Upper ocean carbon export and the biological pump. Oceanography 14(4):50–58. Available online at: http://www.tos.org/oceanography/issues/issue_archive/14_4.html (accessed July 15, 2009).
  12. Ducklow, H.W., S.C. Doney, and D.K. Steinberg. 2009. Contributions of long-term research and time-series observations to marine ecology and biogeochemistry. Annual Review of Marine Science 1:279–302.
  13. Emerson, S., C. Stump, and D. Nicholson. 2008. Net biological oxygen production in the ocean: Remote in situ measurements of O2 and N2 in surface waters. Global Biogeochemical Cycles 22, GB3023, doi:10.1029/2007GB003095.
  14. Gregg, W. 2008. Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model. Journal of Marine Systems 69:205–225.
  15. Gruber, N., S. Doney, S. Emerson, D. Gilbert, T. Kobayashi, A. Körtzinger, G. Johnson, K. Johnson, S. Riser, and O. Ulloa. 2007. The Argo-oxygen program: A white paper to promote the addition of oxygen sensors to the international Argo float program. Available online at: http://www.imber.info/C_WG_SubGroup2.html (accessed July 13, 2009).
  16. Jenkins, W.J., and S.C. Doney. 2003. The subtropical nutrient spiral. Global Biogeochemical Cycles 17(1110), doi:10.1029/2003GB002085.
  17. Johnson, K.S., and L.J. Coletti. 2002. In situ ultraviolet spectrophotometry for high resolution and long term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Research Part I 49:1,291–1,305.
  18. Johnson, K.S., J.A. Needoba, S.C. Riser, and W.J. Showers. 2007. Chemical sensor networks for the aquatic environment. Chemical Reviews 107:623–640, doi:10.1021/cr050354e.
  19. Körtzinger, A., J. Schimanski, U. Send, and D. Wallace. 2004. The ocean takes a deep breath. Science 306:1,337.
  20. Körtzinger, A., J. Schimanski, and U. Send. 2005. High quality oxygen measurements from profiling floats: A promising new technique. Journal of Atmospheric and Oceanic Technology 22:302–308.
  21. Körtzinger, A., U. Send, R.S. Lampitt, S. Hartman, D.W.R. Wallace, J. Karstensen, M.G. Villagarcia, O. Llinás, and M.D. DeGrandpre. 2008. The seasonal pCO2 cycle at 49°N/16.5°W in the northeastern Atlantic Ocean and what it tells us about biological productivity. Journal of Geophysical Research 113, C04020, doi:10.1029/2007JC004347.
  22. MacCready, P., and P. Quay. 2001. Biological export flux in the Southern Ocean estimated from a climatological nitrate budget. Deep-Sea Research Part II 48:4,299–4,322.
  23. Martz, T.R, K.S. Johnson, and S.C. Riser. 2008. Ocean metabolism observed with oxygen sensors on profiling floats in the Pacific. Limnology and Oceanography 53:2,094-2,111.
  24. McNeil, C.L., E. D’Asaro, B.D. Johnson, and M. Horn. 2006. A gas tension device with response times of minutes. Journal of Atmospheric and Oceanic Technology 23:1,539–1,558.
  25. Meissner, K.J., E.D. Galbraith, and C. Volker. 2005. Denitrification under glacial and interglacial conditions: A physical approach. Paleoceanography 20, PA3001, doi:10.1029/2004PA001083.
  26. Nicholson, D., S. Emerson, and C. Erickson. 2008. Sub mixed-layer oxygen production determined from Seaglider surveys. Limnology and Oceanography 53:2,226–2,236.
  27. Niewiadomska, K., H. Claustre, L. Prieur, and F. d’Ortenzio. 2008. Submesoscale physical-biogeochemical coupling across the Ligurian current (northwestern Mediterranean) using a bio-optical glider. Limnology and Oceanography 53:2,210–2,225.
  28. Perry, M.J., and D.L. Rudnick. 2003a. Observing the ocean with autonomous and Lagrangian platforms and sensors (ALPS): The role of ALPS in sustained ocean observing systems. Oceanography 16(4):31–36. Available online at: http://www.tos.org/oceanography/issues/issue_archive/16_4.html (accessed July 15, 2009).
  29. Perry, M.J., and D.L. Rudnick, eds. 2003b. ALPS: Autonomous and Lagrangian Platforms and Sensors. Workshop Report, 64 pp. Available online at: http://www.geo-prose.com/pdfs/alps_report.pdf (accessed July 13, 2009).
  30. Perry, M.J., B.S. Sackmann, C.C. Eriksen, and C.M. Lee. 2008. Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast, USA. Limnology and Oceanography 53:2,169–2,179.
  31. Riser, S.C., and K.S. Johnson. 2008. Net production of oxygen in the subtropical ocean. Nature 451:323–326.
  32. Roemmich, D., S. Riser, R. Davis, and Y. Desaubies. 2004. Autonomous profiling floats: Workhorse for broadscale ocean observations. Marine Technology Society Journal 38:31–39.
  33. Roemmich, D., G.C. Johnson, S. Riser, R. Davis, J. Gilson, W.B. Owens, S.L. Garzoli, C. Schmid, and M. Ignaszewski. 2009. The Argo Program: Observing the global ocean with profiling floats. Oceanography 22(2):34:–43.
  34. Rudnick, D.L., R.E. Davis, C.C. Eriksen, D.M. Fratantoni, and M.J. Perry. 2004. Underwater gliders for ocean research. Marine Technology Society Journal 38:73–84.
  35. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, and others. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–371.
  36. Sarmiento, J.L., N. Gruber, M.A. Brzezinski, and J.P. Dunne. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 426:56–60.
  37. Stramma, L., G.C. Johnson, J. Sprintall, and V. Mohrholz. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658.
  38. Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tillbrook, N. Bates, R. Wanninkhof, R.A. Feely, C. Sabine, J. Olafsson, and Y. Nojiri. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II 49:1,601–1,622.
  39. Tengberg, A., J. Hovdenes, H.J. Andersson, O. Brocandel, R. Diaz, D. Hebert, T. Arnerich, C. Huber, A. Körtzinger, A. Khripounoff, and others. 2006. Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnology and Oceanography: Methods 4:7–17.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.