Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 04

View Issue TOC
Volume 32, No. 4
Pages 22 - 31


Nonlinear Short-Term Upper Ocean Circulation Variability in the Tropical Western Pacific

Bo Qiu Shuiming ChenBrian S. PowellPatrick L. ColinDaniel L. RudnickMartha C. Schönau
Article Abstract

Due to the presence of a well-defined permanent thermocline, low-​frequency upper ocean circulation variability in the tropical western Pacific Ocean is effectively captured by the region’s linear baroclinic Rossby wave dynamics. A careful examination of variations in the circulation surrounding Palau using in situ temperature measurements, satellite altimetry data, and ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) ocean state estimates reveals that linear dynamics fails to describe the observed large-amplitude upper ocean variations on monthly timescales. These short-timescale variations are particularly active during the transition from El Niño to La Niña conditions. As an El Niño event terminates and the tropical trade winds rebound, downwelling baroclinic Rossby waves are generated across the off-equatorial Pacific basin. When these wind-forced Rossby waves propagate into the western North Pacific basin, they deform the pre-existing, horizontally sheared, North Equatorial Countercurrent (NECC) and subject it to barotropic instability. By breaking down into large-amplitude eddies, the unstable NECC generates rapidly evolving upper ocean changes with sea level, temperature, and meridional velocity fluctuations exceeding 0.5 m, 10°C, and 0.5 m s–1, respectively, over a period of one to two months around Palau. This variability in short-term, large-amplitude upper ocean circulation results in significant regional water mass and ecosystem changes.


Qiu, B., S. Chen, B.S. Powell, P.L. Colin, D.L. Rudnick, and M.C. Schönau. 2019. Nonlinear short-term upper ocean circulation variability in the tropical western Pacific. Oceanography 32(4):22–31, https://doi.org/10.5670/oceanog.2019.408.

Supplementary Materials

> Figures S1–S4 (5 MB pdf)


Andres, M., M. Siegelman, V. Hormann, R.C. Musgrave, S.T. Merrifield, D.L. Rudnick, M.A. Merrifield, M.H. Alford, G. Voet, H.W. Wijesekera, and others. 2019. Eddies, topography, and the abyssal flow by the Kyushu-Palau Ridge near Velasco Reef. Oceanography 32(4):46–55, https://doi.org/​10.5670/oceanog.2019.410.

Bruno, J.F., C.E. Siddon, J.D. Whiman, P.L. Colin, and M.A. Toscano. 2001. El Niño related coral bleaching in Palau, western Caroline Islands. Coral Reefs 20:127–136, https://doi.org/10.1007/s003380100151.

Cabrera, O.C., C.L. Villanoy, I.D. Alabia, and A.L. Gordon. 2015. Shifts in chlorophyll a associated with the North Equatorial Current bifurcation latitude off eastern Luzon. Oceanography 28(4):46–53, https://doi.org/​10.5670/oceanog.2015.80.

Chelton, D.B., R.A. de Szoeke, M.G. Schlax, K.E. Naggar, and N. Siwertz. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography 28:433–460, https://doi.org/​10.1175/​1520-0485(1998)028​<0433:GVOTFB>2.0.CO;2.

Chen, X., B. Qiu, S. Chen, Y. Qi, and Y. Du. 2015. Seasonal eddy kinetic energy modulations along the North Equatorial Countercurrent in the western Pacific. Journal of Geophysical Research 120:6,351–6,362, https://doi.org/​10.1002/2015JC011054.

Colin, P.L. 2009. Marine Environments of Palau. Indo-Pacific Press, 414 pp., https://coralreefpalau.org/wp-content/uploads/2017/04/Colin-PL-2009-Marine-Environments-of-Palau.pdf.

Colin, P.L. 2018. Ocean warming and the reefs of Palau. Oceanography 31(2):126–135, https://doi.org/​10.5670/oceanog.2018.214.

Dee, D.P., S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, and others. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137:553–597, https://doi.org/10.1002/qj.828.

Gill, A.E. 1982. Atmosphere-Ocean Dynamics. International Geophysics Series, vol. 30, Academic Press, 662 pp.

Greatbatch, R.J., X. Zhu, and M. Class. 2018. Reconstructing tropical Pacific sea level variability for the period 1961–2002 using a linear multimode model. Journal of Geophysical Research 123:2,037–2,048, https://doi.org/​10.1002/2017JC013652.

Heron, S.F., E.J. Metzger, and W.J. Skirving. 2006. Seasonal variations of the ocean surface circulation in the vicinity of Palau. Journal of Oceanography 62:413–426, https://doi.org/10.1007/s10872-006-0065-3.

Hsin, Y.-C., and B. Qiu. 2012. Seasonal fluctuations of the surface North Equatorial Countercurrent (NECC) across the Pacific basin. Journal of Geophysical Research 117, C06001, https://doi.org/​10.1029/2011JC007794.

Hu, D., L. Wu, A. Sen Gupta, A. Ganachaud, B. Qiu, A.L. Gordon, X. Lin, Z. Chen, S. Hu, G. Wang, and others. 2015. Pacific western boundary currents and their roles in climate. Nature 522:299–308, https://doi.org/10.1038/nature14504.

Kashino, Y., A. Atmadipoera, Y. Kuroda, and Lukijanto. 2013. Observed features of the Halmahera and Mindanao Eddies. Journal of Geophysical Research 118:6,543–6,560, https://doi.org/​10.1002/2013JC009207.

Kessler, W.S. 1990. Observation of long Rossby waves in the northern tropical Pacific. Journal of Geophysical Research 95:5,183–5,217, https://doi.org/​10.1029/JC095iC04p05183.

Kessler, W.S., and S. Cravatte. 2013. ENSO and short-term variability of the South Equatorial Current entering the Coral Sea. Journal of Physical Oceanography 43:956–969, https://doi.org/10.1175/JPO-D-12-0113.1.

L’Heureux, M., K. Takahashi, A.B. Watkins, A.G. Barnston, E.J. Becker, T.E. Di Liberto, F. Gamble, J. Gottschalck, M.S. Halpert, B. Huang, and others. 2017. Observing and predicting the 2015/16 El Niño. Bulletin of the American Meteorological Society 88:1,363–1,382, https://doi.org/​10.1175/BAMS-D-16-0009.1.

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research 102:5,753–5,766, https://doi.org/​10.1029/96JC02775.

Menemenlis, D., C. Hill, A. Adcroft, J.-M. Campin, B. Cheng, B. Ciotti, I. Fukumori, P. Heimbach, C. Henze, A. Köhl, and others. 2005a. NASA supercomputer improves prospects for ocean climate research. Eos Transactions, American Geophysical Union 86:89–96, https://doi.org/​10.1029/2005EO090002.

Menemenlis, D., I. Fukumori, and T. Lee. 2005b. Using Green’s functions to calibrate an ocean general circulation model. Monthly Weather Review 133:1,224–1,240, https://doi.org/10.1175/MWR2912.1.

Qiu, B., and S. Chen. 2010. Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. Journal of Physical Oceanography 40:2,525–2,538, https://doi.org/​10.1175/2010JPO4462.1.

Qiu, B., and S. Chen. 2012. Multi-decadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. Journal of Physical Oceanography 42:193–206, https://doi.org/10.1175/JPO-D-11-061.1.

Qiu, B., and T.M. Joyce. 1992. Interannual variability in the mid- and low-latitude western North Pacific. Journal of Physical Oceanography 22:1,062–1,079, https://doi.org/10.1175/1520-0485(1992)022​<1062:IVITMA>2.0.CO;2.

Qiu, B., and R. Lukas. 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. Journal of Geophysical Research 101:12,315–12,330, https://doi.org/​10.1029/​95JC03204.

Qiu, B., S. Chen, D. Rudnick, and Y. Kashino. 2015. A new paradigm for the North Pacific subthermocline low-latitude western boundary current system. Journal of Physical Oceanography 45:2,407–2,423, https://doi.org/​10.1175/JPO-D-15-0035.1.

Rio, M.-H., S. Mulet, and N. Picot. 2014. Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophysical Research Letters 41:8,918–8,925, https://doi.org/10.1002/2014GL061773.

Schönau, M.C., and D.L. Rudnick. 2017. Mindanao Current and undercurrent: Structure and transport from repeat glider observations. Journal of Physical Oceanography 47:2,055–2,075, https://doi.org/10.1175/JPO-D-16-0274.1.

Schönau, M.C., H.W. Wijesekera, W.J. Teague, P.L. Colin, G. Gopalakrishnan, D.L. Rudnick, B.D. Cornuelle, Z.R. Hallock, and D.W. Wang. 2019. The end of an El Niño: A view from Palau. Oceanography 32(4):32–45, https://doi.org/​10.5670/oceanog.2019.409.

Schramek, T.A., P.L. Colin, M.A. Merrifield, and E.J. Terrill. 2018. Depth-dependent thermal stress around corals in the tropical Pacific Ocean. Geophysical Research Letters 45:9,739–9,747, https://doi.org/10.1029/2018GL078782.

Timmermann, A., S. McGrager, and F.-F. Jin. 2010. Wind effects on the past and future regional sea level trends in the southern Indo-Pacific. Journal of Climate 23:4,429–4,437, https://doi.org/​10.1175/2010JCLI3519.1.

Zedler, S.E., B.S. Powell, B. Qiu, and D.L. Rudnick. 2019. Energy transfer in the western tropical Pacific. Oceanography 32(4):136–145, https://doi.org/​10.5670/oceanog.2019.419.

Zhuang, W., B. Qiu, and Y. Du. 2013. Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine archipelago. Journal of Geophysical Research 118:6,759–6,773, https://doi.org/​10.1002/​2013JC009376.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.