Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 02

View Issue TOC
Volume 27, No. 2
Pages 180 - 185


Multiplatform, Multidisciplinary Investigations of the Impacts of Modified Circumpolar Deep Water in the Ross Sea, Antarctica

By Walker O. Smith Jr. , Kimberly T. Goetz , Daniel E. Kaufman, Bastien Y. Queste , Vernon Asper , Daniel P. Costa, Michael S. Dinniman, Marjorie A.M. Friedrichs , Eileen E. Hofmann, Karen J. Heywood, John M. Klinck, Josh T. Kohut, and Craig M. Lee  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

In 2010–2011, three projects combined to characterize the temporal and spatial distributions of Modified Circumpolar Deep Water (MCDW) in the Ross Sea using icebreaker-based sampling, gliders, instrumented seals, and hindcasts from a numerical circulation model. The fieldwork clearly identified MCDW throughout the Ross Sea, and the data were used to determine its influence on potential heat and nutrient inputs and biotic distributions. Furthermore, the numerical simulations confirm its apparent trajectory and location. Substantial small-scale variability in oceanographic and biological distributions suggests that such variability may play an important role in biogeochemical cycles. Data from the three projects provide a view of hydrographic variability in the Ross Sea that is impossible to obtain using traditional sampling. Multiplatform investigations are promising approaches to future polar experiments where logistical considerations are of paramount importance.


Smith, W.O. Jr., K.T. Goetz, D.E. Kaufman, B.Y. Queste, V. Asper, D.P. Costa, M.S. Dinniman, M.A.M. Friedrichs, E.E. Hofmann, K.J. Heywood, J.M. Klinck, J.T. Kohut, and C.M. Lee. 2014. Multiplatform, multidisciplinary investigations of the impacts of Modified Circumpolar Deep Water in the Ross Sea, Antarctica. Oceanography 27(2):180–185, https://doi.org/10.5670/oceanog.2014.36.


Bost, C.A., C. Cotté, F. Bailleul, Y. Cherel, J.B. Charrassin, C. Guinet, D.G. Ainley, and H. Weimerskirch. 2009. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. Journal of Marine Systems 78:363–376, https://doi.org/10.1016/j.jmarsys.2008.11.022.

Costa, D.P., J.M. Klinck, E.E. Hofmann, M.S. Dinniman, and J.M. Burns. 2008. Upper ocean variability in west Antarctic Peninsula continental shelf waters as measured using instrumented seals. Deep Sea Research Part II 55:323–337, https://doi.org/10.1016/j.dsr2.2007.11.003.

Dinniman, M.S., J.M. Klinck, and W.O. Smith Jr. 2011. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Research Part II 58:1,508–1,523, https://doi.org/10.1016/j.dsr2.2010.11.013.

DiTullio, G.R., J.M. Grebmeier, K.R. Arrigo, M.P. Lizotte, D.H. Robinson, A. Leventer, J.P. Barry, M.L. VanWoert, and R.B. Dunbar. 2000. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404:595–598, https://doi.org/10.1038/35007061.

Fennel, K., I. Cetinić, E. D’Asaro, C. Lee, and M.J. Perry. 2011. Autonomous data describe North Atlantic spring bloom. Eos Transactions, American Geophysical Union 92(5):465, https://doi.org/10.1029/2011EO500002.

Goetz, K., P. Robinson, M. Shero, J. Burns, and D. Costa. O’ seal, where art thou? Overwinter movement, habitat, and navigation of Weddell seals in the Ross Sea. Paper presented at the Scientific Committee on Antarctic Research (SCAR) Open Science Conference, Portland, Oregon, July 16–19, 2012.

Hückstadt, L.A., J.M. Burns, P.L. Koch, B.I. McDonald, D.E. Crocker, and D.P. Costa. 2012. Diet of a specialist in a changing environment: The crabeater seal along the western Antarctic Peninsula. Marine Ecology Progress Series 455:287–301, https://doi.org/10.3354/meps09601.

Kohut, J.T., E. Hunter, and B. Huber. 2012. Small-scale variability of the cross shelf flow over the outer shelf of the Ross Sea. Journal of Geophysical Research 118:1,863–1,876, https://doi.org/10.1002/jgrc.20090.

Mahadevan, A., E. D’Asaro, C. Lee, and M.J. Perry. 2012. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337:54–58, https://doi.org/10.1126/science.1218740.

Orsi, A.H., and C.L. Wiederwohl. 2009. A recount of Ross Sea waters. Deep Sea Research Part II 56:778–795, https://doi.org/10.1016/j.dsr2.2008.10.033.

Peloquin, J.A., and W.O. Smith Jr. 2007. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition. Journal of Geophysical Research 112, C08013, https://doi.org/10.1029/2006JC003816.

Piñones, A., E.E. Hofmann, K.L. Daly, M.S. Dinniman, and J.M. Klinck. 2013. Modeling the remote and local connectivity of Antarctic krill (Euphausia superba) populations along the western Antarctic Peninsula. Marine Ecology Progress Series 481:69–92, https://doi.org/10.3354/meps10256.

Smith, W.O. Jr., D.G. Ainley, K.R. Arrigo, and M.S. Dinniman. 2014a. The oceanography and ecology of the Ross Sea. Annual Review of Marine Science 6:469–487, https://doi.org/10.1146/annurev-marine-010213-135114.

Smith, W.O. Jr., M.S. Dinniman, E.E. Hoffman, and J. Klinck. 2014b. The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century. Geophysical Research Letters 41:1,624–1,631, https://doi.org/10.1002/2014GL059311.

Smith, W.O. Jr., J. Marra, M.R. Hiscock, and R.T. Barber. 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Research Part II 47:3,119–3,140, https://doi.org/10.1016/S0967-0645(00)00061-8.

Smith, W.O. Jr., P.N. Sedwick, K.R. Arrigo, D.G. Ainley, and A.H. Orsi. 2012. The Ross Sea in a sea of change. Oceanography 25(3):90–103, https://doi.org/10.5670/oceanog.2012.80.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.