Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 01

View Issue TOC
Volume 25, No. 1
Pages 168 - 179

OpenAccess

Measurements and Models of Heat Flux and Plumes from Hydrothermal Discharges Near the Deep Seafloor

By Daniela Di Iorio , J. William Lavelle, Peter A. Rona, Karen Bemis, Guangyu Xu, Leonid N. Germanovich, Robert P. Lowell , and Gence Genc  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Deep-sea hydrothermal vents are conduits of heat and chemicals from the lithosphere to the hydrosphere. Their plumes rise hundreds of meters from the seafloor into the water column; during their ascent, they entrain ambient water and are subject to cross flows. Source fluxes can vary in time, partly in response to seismic and magmatic events. Long-term measurements of physical properties of hydrothermal plumes provide windows to conditions within Earth’s interior. This article provides examples of long-term measurements of acoustic scattering recorded along Endeavour Segment of the Juan de Fuca Ridge. Acoustic backscatter data from particles and temperature fluctuations provide information on width, shape, and vertical velocity in the plumes from which entrainment and upward transport are estimated. Acoustic forward scatter by turbulence within the plume gives time series of the plume’s path-averaged vertical velocity and temperature fluctuations and exhibits variability that is dependent on the ambient horizontal flow. At several vents, direct measurements of heat flux using in situ devices and video imagery have yielded an integrated heat output for various sulfide structures. In conjunction with these measurements, plume models that incorporate ambient stratification and horizontal tidal flows are yielding insights into the vertical and azimuthal dependence of entrainment, rise-height variability, and plume bending.

Citation

Di Iorio, D., J.W. Lavelle, P.A. Rona, K. Bemis, G. Xu, L.N. Germanovich, R.P. Lowell, and G. Genc. 2012. Measurements and models of heat flux and plumes from hydrothermal discharges near the deep seafloor. Oceanography 25(1):168–179, https://doi.org/10.5670/oceanog.2012.14.

References
    Allen, S.E., and R.E. Thomson. 1993. Bottom-trapped subinertial motions over midocean ridges in a stratified rotating fluid. Journal of Physical Oceanography 23:566–581, https://doi.org/10.1175/1520-0485(1993)023<0566:BTSMOM>2.0.CO;2.
  1. Baker, E.T., and G.J. Massoth. 1987. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, Northeast Pacific Ocean. Earth and Planetary Science Letters 85:59–73, https://doi.org/10.1016/0012-821X(87)90021-5.
  2. Bemis, K., R.P. Lowell, and A. Farough. 2012. Diffuse flow on and around hydrothermal vents at mid-ocean ridges. Oceanography 25(1):182–191, https://doi.org/10.5670/oceanog.2012.16.
  3. Bemis, K.G., R.P. von Herzen, and M.J. Mottl. 1993. Geothermal heat flux from hydrothermal plumes on the Juan de Fuca Ridge. Journal of Geophysical Research 98:6,351–6,369, https://doi.org/10.1029/92JB02273.
  4. Bohnenstiehl, D.R., R.P. Dziak, M. Tolstoy, C.G. Fox, and M. Fowler. 2004. Temporal and spatial history of the 1999–2000 Endeavour Segment seismic series, Juan de Fuca Ridge. Geochemistry Geophysics Geosystems 5, Q09003, https://doi.org/10.1029/2004GC000735.
  5. Butterfield, D.A., R.E. McDuff, M.J. Mottl, M.D. Lilley, J.E. Lupton, and G.J. Massoth. 1994. Gradients in the composition of hydrothermal fluids from the Endeavour Segment vent field: Phase separation and brine loss. Journal of Geophysical Research 99:9,561–9,583, https://doi.org/10.1029/93JB03132.
  6. Cannon, G.A., and R.E. Thomson. 1996. Characteristic 4-day oscillations trapped by the Juan de Fuca Ridge. Geophysical Research Letters 23:1,613–1,616, https://doi.org/10.1029/96GL01370.
  7. Delaney, P.T., D.D. Pollard, J.I. Ziony, and E.H. Mckee. 1986. Field relations between dikes and joints: Emplacement processes and paleostress analysis. Journal of Geophysical Research 91(B5):4,920–4,938, https://doi.org/10.1029/JB091iB05p04920.
  8. Devenish, B.J., G. Rooney, H. Webster, and D. Thomson. 2010. The entrainment rate for buoyant plumes in a crossflow. Boundary-Layer Meteorology 134:411–439, https://doi.org/10.1007/s10546-009-9464-5.
  9. Fan, L.-N. 1967. Turbulent Buoyant Jets into Stratified or Flowing Ambient Fluids. Technical Report No. KH-R-15, California Institute of Technology, Pasadena, CA.
  10. Farmer, D.M., S.F. Clifford, and J.A. Verrall. 1987. Scintillation structure of a turbulent tidal flow. Journal of Geophysical Research 92:5,369–5,382, https://doi.org/10.1029/JC092iC05p05369.
  11. Fornari, D.J., T. Shank, K.L. Von Damm, T.K.P. Gregg, M. Lilley, G. Levai, A. Bray, R.M. Haymon, M.R. Perfit, and R. Lutz. 1998. Time-series temperature measurements at high-temperature hydrothermal vents, East Pacific Rise 9°49’–51’N: Evidence for monitoring a crustal cracking event. Earth and Planetary Science Letters 160:419–431, https://doi.org/10.1016/S0012-821X(98)00101-0.
  12. Germanovich, L.N., D. Di Iorio, G. Genc, R.S. Hurt, R.P. Lowell, J.F. Holden, D.A. Butterfield, and E.J. Olson. 2009. Direct measurements of hydrothermal heat output at Juan de Fuca Ridge. Eos, Transactions, American Geophysical Union 90(52): Fall Meeting Abstract OS13A–1179.
  13. Germanovich, L.N., R.P. Lowell, and D.K. Astakhov. 2000. Stress dependent permeability and the formation of seafloor event plumes. Journal of Geophysical Research 105(B4):8,341–8,354, https://doi.org/10.1029/1999JB900431.
  14. Germanovich, L.N., R.P. Lowell, and P. Ramondenc. 2011. Magmatic origin of hydrothermal response to earthquake swarms: Constraints from heat flow and geochemical data. Journal of Geophysical Research 116, B05103, https://doi.org/10.1029/2009JB006588.
  15. Ginster, U., and M.J. Mottl. 1994. Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge. Journal of Geophysical Research 99:4,937–4,950, https://doi.org/10.1029/93JB02800.
  16. Goss, A.R., M.E. Perfit, W.I. Ridley, K.H. Rubin, G.D. Kamenov, S.A. Soule, A. Fundis, and D.J. Fornari. 2010. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46’N–9°56’N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochemistry Geophysics Geosystems 11, Q05T09, https://doi.org/10.1029/2009GC002977.
  17. Horne, R., L. Hebert, L. Liu, and R. Lowell. 2010. Fractional crystallization and replenishment of the magma chamber at the East Pacific Rise 9°50’N. Eos, Transactions, American Geophysical Union 91(52): Fall Meeting Abstract OS21C-1507.
  18. Hoult, D.P., and J.C. Weil. 1972. Turbulent plume in a laminar cross flow. Atmospheric Environment 6:513–531, https://doi.org/10.1016/0004-6981(72)90069-8.
  19. Jackson, D.R., C.D. Jones, P.A. Rona, and K.G. Bemis. 2003. A method for Doppler acoustic measurement of black smoker flow fields. Geochemistry Geophysics Geosystems 4(11), 1095, https://doi.org/10.1029/2003GC000509.
  20. Jean-Baptiste, P., H. Bougault, A. Vangriesheim, J.L. Charlou, J. Radford-Knoery, Y. Fouquet, D. Needham, and C. German. 1998. Mantle 3He in hydrothermal vents and plume of the Lucky Strike site (MAR 37°17’N) and associated geothermal heat flux. Earth and Planetary Science Letters 157:69–77, https://doi.org/10.1016/S0012-821X(98)00022-3.
  21. Johnson, H.P., M. Hutnak, R.P. Dziak, C.G. Fox, I. Urcuyo, J.P. Cowen, J. Nabelek, and C. Fisher. 2000. Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407:174–177, https://doi.org/10.1038/35025040.
  22. Kelley, D.S., S.M. Carbotte, D.W. Caress, D.A. Clague, J.R. Delaney, J.B. Gill, H. Hadaway, J.F. Holden, E.E.E. Hooft, J.P. Kellogg, and others. 2012. Endeavour Segment of the Juan de Fuca Ridge: One of the most remarkable places on Earth. Oceanography 25(1):44–61, https://doi.org/10.5670/oceanog.2012.03.
  23. Lavelle, J.W. 1995. The initial rise of a hydrothermal plume from a line segment source: Results from a three-dimensional numerical model. Geophysical Research Letters 22(2):159–162, https://doi.org/10.1029/94GL01463.
  24. Lavelle, J.W. 1997. Buoyancy-driven plumes in rotating, stratified cross flows: Plume dependence on rotation, turbulent mixing, and cross-flow strength. Journal of Geophysical Research 102(C2):3,405–3,420, https://doi.org/10.1029/96JC03601.
  25. Lavelle, J.W., and E.T. Baker. 1994. A numerical study of local convection in the benthic ocean induced by episodic hydrothermal discharges. Journal of Geophysical Research 99(C8):16,065–16,080, https://doi.org/10.1029/94JC01203.
  26. Lavelle, J.W., and M.A. Wetzler. 1999. Diffuse venting and background contributions to chemical anomalies in a neutrally buoyant ocean hydrothermal plume. Journal of Geophysical Research 104(C2):3,201–3,209, https://doi.org/10.1029/1998JC900063.
  27. Lilley, M.D., D.A. Butterfield, J.E. Lupton, and E.J. Olson. 2003. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422:878–881.
  28. Liu, L., and R.P. Lowell. 2009. Models of hydrothermal heat output from a convecting, crystallizing, replenished magma chamber beneath an oceanic spreading center. Journal of Geophysical Research 114, B02102, https://doi.org/10.1029/2008JB005846.
  29. Lowell, R.P., A. Farough, L.N. Germanovich, L.B. Hebert, and R. Horne. 2012. A vent-field-scale model of the East Pacific Rise 9°50’N magma-hydrothermal system. Oceanography 25(1):158–167, https://doi.org/10.5670/oceanog.2012.13.
  30. Lowell, R.P., and L.N. Germanovich. 1995. Dike injection and the formation of megaplumes at ocean ridges. Science 267:1,804–1,807, https://doi.org/10.1126/science.267.5205.1804.
  31. McDuff, R.E. 1995. Physical dynamics of deep-sea hydrothermal plumes. Pp. 357–368 in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thomson, eds, Geophysical Monograph Series, vol. 91, American Geophysical Union, Washington, DC.
  32. Morton, B., G. Taylor, and J. Turner. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proceedings of the Royal Society of London A 234:1–23, https://doi.org/10.1098/rspa.1956.0011.
  33. Nooner, S.L., and W.W. Chadwick Jr. 2009. Volcanic inflation measured in the caldera of Axial Seamount: Implications for magma supply and future eruptions. Geochemistry Geophysics Geosystems 10, Q02002, https://doi.org/10.1029/2008GC002315.
  34. Ostashev, V.E. 1994. Sound propagation and scattering in media with random inhomogeneities of sound speed, density and medium velocity. Waves in Random Media 4:403–428, https://doi.org/10.1088/0959-7174/4/4/001.
  35. Palmer, D.R., and P.A. Rona. 2005. Acoustical imaging of deep ocean hydrothermal flows. Pp. 551–563 in Sounds in the Sea: From Ocean Acoustics to Acoustical Oceanography. H. Medwin, ed., Cambridge University Press.
  36. Pawlowicz, R., B. Beardsley, and S. Lentz. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Computers & Geosciences 28:929–937, https://doi.org/10.1016/S0098-3004(02)00013-4.
  37. Ramondenc, P., L.N. Germanovich, and R.P. Lowell. 2008. Modeling the hydrothermal response to earthquakes with application to the 1995 event at 9°50’N, East Pacific Rise. Pp. 97–122 in Magma to Microbe: Modeling Hydrothermal Processes at Oceanic Spreading Centers. R.P. Lowell, J.S. Seewald, A. Metaxas, and M.R. Perfit, eds, Geophysical Monograph Series, vol. 178, American Geophysical Union, Washington, DC.
  38. Ramondenc, P., L.N. Germanovich, K.L. Von Damm, and R.P. Lowell. 2006. The first measurements of hydrothermal heat output at 9°50’N, East Pacific Rise. Earth and Planetary Science Letters 245:487–497, https://doi.org/10.1016/j.epsl.2006.03.023.
  39. Rona, P.A., K.G. Bemis, C.D. Jones, D.R. Jackson, K. Mitsuzawa, and D.R. Palmer. 2010. Partitioning between plume and diffuse flow at the Grotto Vent cluster, Main Endeavour Vent Field, Juan de Fuca Ridge: Past and present. Eos, Transactions, American Geophysical Union 91(52):Fall Meeting Abstract OA21C-1519.
  40. Rona, P.A., D.R. Jackson, T. Wen, C. Jones, K. Mitsuzawa, K.G. Bemis, and J.G. Dworski. 1997. Acoustic mapping of diffuse flow at a seafloor hydrothermal site: Monolith Vent, Juan de Fuca Ridge. Geophysical Research Letters 24:2,351–2,354, https://doi.org/10.1029/97GL02504.
  41. Rona, P.A., and C.D. Jones. 2009. Acoustic scintillation thermography. Pp. 71–74 in Encyclopedia of Ocean Sciences, 2nd ed. Elsevier Ltd., https://doi.org/10.1016/B978-012374473-9.00735-9.
  42. Rona, P., and R. Light. 2011. Sonar images hydrothermal vents in seafloor observatory. Eos, Transactions, American Geophysical Union 92(20):169, https://doi.org/10.1029/2011EO200002.
  43. Rona, P.A., and D.A. Trivett. 1992. Discrete and diffuse heat transfer at ASHES vent field, Axial Volcano, Juan de Fuca Ridge. Earth and Planetary Science Letters 109:57–71, https://doi.org/10.1016/0012-821X(92)90074-6.
  44. Rosenberg, N.D., J.E. Lupton, D. Kadko, R. Collier, M.D. Lilley, and H. Pak. 1988. Estimation of heat and chemical fluxes from a seafloor hydrothermal vent field using radon measurements. Nature 334:604–607, https://doi.org/10.1038/334604a0.
  45. Ross, T. 2003. Sound scattering from oceanic turbulence. PhD Thesis, University of Victoria, Victoria, BC.
  46. Rudnicki, M.D., and H. Elderfield. 1992. Theory applied to the Mid-Atlantic Ridge hydrothermal plumes: The finite-difference approach. Journal of Volcanology and Geothermal Research 50:161–172, https://doi.org/10.1016/0377-0273(92)90043-D.
  47. Schultz, A., J.R. Delaney, and R.E. McDuff. 1992. On the partitioning of heat flux between diffuse and point source seafloor venting. Journal of Geophysical Research 97(B9):12,299–12,314, https://doi.org/10.1029/92JB00889.
  48. Sohn, R.A., D.J. Fornari, K.L. Von Damm, J.A. Hildebrand, and S.C. Webb. 1998. Seismic and hydrothermal evidence for a cracking event on the East Pacific Rise crest at 9°50’N. Nature 396:159–161, https://doi.org/10.1038/24146.
  49. Sohn, R.A., J.A. Hildebrand, and S.C. Webb. 1999. A microearthquake survey of the high-temperature vent fields on the volcanically active East Pacific Rise (9°50’N). Journal of Geophysical Research 104(B11):25,367–25,377, https://doi.org/10.1029/1999JB900263.
  50. Speer, K.G. 1997. Thermocline penetration by buoyant plumes. Philosophical Transactions of the Royal Society of London A 355:443–457, https://doi.org/10.1029/JC094iC05p06213.
  51. Speer, K.G., and P.A. Rona. 1989. A model of an Atlantic and Pacific hydrothermal plume. Journal of Geophysical Research 94(C5):6,213–6,220, https://doi.org/10.1029/JC094iC05p06213.
  52. Stahr, F.R., R.E. McDuff, D.R. Yoerger, A.M. Bradley, and K. Nakamura. 2000. Heat flux measurements at the Main Endeavour vent field, Juan de Fuca Ridge. Eos, Transactions, American Geophysical Union 81(48):Abstract OS521–03.
  53. Tatarskii, V.I. 1971. The Effects of the Turbulent Atmosphere on Wave Propagation. Israel Program for Scientific Translation Ltd., Jerusalem, reproduced by NTIS, US Department of Commerce, Springfield, VA, Technical Translation 68-50464, 472 pp.
  54. Thomson, R., E.E. Delaney, R.E. McDuff, D.R. Janecky, and J.S. McClain. 1992. Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988. Earth and Planetary Science Letters 111:141–154, https://doi.org/10.1016/0012-821X(92)90175-U.
  55. Thomson, R.E., S.F. Mihaly, A.B. Rabinovich, R.E. McDuff, S.R. Veris, and F.R. Stahr. 2003. Constrained circulation at Endeavour ridge facilitates colonization by vent larvae. Nature 424:545–549, https://doi.org/10.1038/nature01824.
  56. Thomson, R.E., M.M. Subbotina, and M.V. Anisimov. 2005. Numerical simulation of hydrothermal vent-induced circulation at Endeavour Ridge. Journal of Geophysical Research 110, C01004, https://doi.org/10.1029/2004JC002337.
  57. Tivey, M.K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20(1):50-65, https://doi.org/10.5670/oceanog.2007.80.
  58. Tolstoy, M., F. Waldhauser, D.R. Bohnenstiehl, R.T. Weekly, and W.-Y. Kim. 2008. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature 451:181–184, https://doi.org/10.1038/nature06424.
  59. Turner, J.S., and I.H. Campbell. 1987. Temperature, density and buoyancy fluxes in “black smoker” plumes, and the criterion for buoyancy reversal. Earth and Planetary Science Letters 86:85–92, https://doi.org/10.1016/0012-821X(87)90191-9.
  60. Van Ark, E.M., R.S. Detrick, J.P. Canales, S.M. Carbotte, A.J. Harding, G.M. Kent, M.R. Nedimovic, W.S.D. Wilcock, J.B. Diebold, and J.M. Babcock. 2007. Seismic structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations with seismicity and hydrothermal activity. Journal of Geophysical Research 112, B02401, https://doi.org/10.1029/2005JB004210.
  61. Veirs, S.R., R.E. McDuff, and F.R. Stahr. 2006. Magnitude and variance of near-bottom horizontal heat flux at the Main Endeavour hydrothermal vent field. Geochemistry Geophysics Geosystems 7, Q02004, https://doi.org/10.1029/2005GC000952.
  62. Von Damm, K.L., and M.D. Lilley. 2004. Diffuse flow hydrothermal fluids from 9°50’N East Pacific Rise: Origin, evolution and biogeochemical controls. Pp. 245–268 in The Subseafloor Biosphere at Mid-Ocean Ridges. W.S.D. Wilcock E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds, Geophysical Monograph Series, vol. 144, American Geophysical Union, Washington, DC.
  63. Webster, H., and D. Thomson. 2002. Validation of a Lagrangian model plume rise scheme using the Kincaid data set. Atmospheric Environment 36:5,031–5,042, https://doi.org/10.1016/S1352-2310(02)00559-9.
  64. Woods, A.W., and J.R. Delaney. 1992. The heat and fluid transfer associated with the flanges on hydrothermal venting structures. Earth and Planetary Science Letters 112:117–129, https://doi.org/10.1016/S0012-821X(97)00137-4.
  65. Xu, G., and D. Di Iorio. 2011. The relative effects of particles and turbulence on acoustic scattering from deep-sea hydrothermal vent plumes. Journal of the Acoustical Society of America 130:1,856–1,867.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.