Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 04

View Issue TOC
Volume 31, No. 4
Pages 40 - 49

OpenAccess

Light Absorption by Phytoplankton, Non-Algal Particles, and Dissolved Organic Matter in San Jorge Gulf in Summer

By Gabriela N. Williams , Pierre Larouche, Ana I. Dogliotti, and Maité P. Latorre 
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

San Jorge Gulf (SJG) along the Atlantic coast of South America is of high ecological importance, a place where several industrial fisheries exploit species such as hake, the Argentine red shrimp, and the Patagonian scallop. In this region, phytoplankton distribution is often related to bathymetric or oceanographic features such as capes, upwellings, and frontal areas that drive the renewal of nutrients in the surface layer. Satellite remote sensing is a key tool for monitoring such a large ecosystem. Knowledge of the optical properties of seawater in this area is necessary to assess the quality of operational ocean color products. Absorption of light by phytoplankton (aphy), non-algal particles (aNAP), and colored dissolved organic matter (aCDOM), as well as the concentration of chlorophyll-a were measured in February 2014 in the surface layer of the SJG. These parameters all exhibited strong spatial variability that resulted from the gulf’s large-scale circulation and bathymetric features. Although CDOM dominated the absorption budget, there was good correlation between aCDOM and aphy, leading to the characterization of San Jorge Gulf as “Case-1” waters where remote-​sensing algorithms should perform well. Study results showed that the phytoplankton composition was mainly dominated by small cells (0.2–2 µm, i.e., picophytoplankton). The aphy*(440) measured at the end of summer in the SJG (0.01–0.08 m2 mg–1) are in a similar range to those observed elsewhere. Particulate absorption was dominated by phytoplankton (66%).

Citation

Williams, G.N., P. Larouche, A.I. Dogliotti, and M.P. Latorre. 2018. Light absorption by phytoplankton, non-algal particles, and dissolved organic matter in San Jorge Gulf in summer. Oceanography 31(4):40–49, https://doi.org/10.5670/oceanog.2018.409.

Supplementary Materials

Table S1 and Figure S1 (299 KB pdf)

References
    Acha, E.M., H.W. Mianzan, R.A. Guerrero, M. Favero, and J. Bava. 2004. Marine fronts at the continental shelves of austral South America. Physical and ecological processes. Journal of Marine Systems 44(1–2):83–105, https://doi.org/10.1016/​j.jmarsys.2003.09.005.
  1. Akselman, R. 1996. Estudios ecológicos en el golfo San Jorge y adyacencias (Atlántico sudoccidental). Distribución, abundancia y variación estacional del fitoplancton en relación a factores físico-químicos y a la dinámica hidrográfica. PhD Thesis, Universidad de Buenos Aires, Buenos Aires, Argentina.
  2. Astoreca, R., D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot. 2012. Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea. Continental Shelf Research 35:117–128, https://doi.org/10.1016/​j.csr.2012.01.007.
  3. Berthon, J.F., and A. Morel. 1992. Validation of a spectral light-photosynthesis model and use of the model in conjunction with remotely sensed pigment observations. Limnology and Oceanography 37(4):781–796, https://doi.org/​10.4319/lo.1992.37.4.0781.
  4. Bogazzi, E., A. Baldoni, A.L. Rivas, P. Martos, R. Reta, J.M.L. Orensanz, M. Lasta, P. Dell’ Arciprete, and F. Werner. 2005. Spatial correspondence between areas of concentration of Patagonian scallop (Zygochlamys patagonica ) and frontal systems in the southwestern Atlantic. Fisheries Oceanography 14(5):359–376, https://doi.org/​10.1111/j.1365-2419.2005.00340.x.
  5. Boss, E., W.S. Pegau, J.R.V. Zaneveld, and A.H.B. Barnard. 2001. Spatial and temporal variability of absorption by dissolved material at a continental shelf. Journal of Geophysical Research 106:9,499–9,508, https://doi.org/​10.1029/​2000JC900008.
  6. Bricaud, A., M. Babin, A. Morel, and H. Claustre. 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research 100(C7):13,321–13,332, https://doi.org/​10.1029/95JC00463.
  7. Bricaud, A., H. Claustre, J. Ras, and K Oudbelkheir. 2004. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research 109(C11):1–12, https://doi.org/​10.1029/​2004JC002419.
  8. Bricaud, A., A. Morel, and L. Prieur. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography 26(1):43–53, https://doi.org/​10.4319/lo.1981.26.1.0043.
  9. Bricaud, A., and D. Stramski. 1990. Spectral absorption coefficients of living phytoplankton and non-​algal biogenous matter: A comparison between the Peru upwelling area and the Sargasso Sea. Limnology and Oceanography 53:562–582, https://doi.org/10.4319/lo.1990.35.3.0562.
  10. Carder, K.L., F.R. Chen, Z.P. Lee, and S.K. Hawes. 1999. Semianalytic moderate resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. Journal of Geophysical Research 104(C3):5,403–5,421, https://doi.org/10.1029/1998JC900082.
  11. Carder, K.L., S.K. Hawes, K.A. Baker, R.C. Smith, R.G. Steward, and B.G. Mitchell. 1991. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. Journal of Geophysical Research 96(C11):20,599–20,611, https://doi.org/10.1029/91JC02117.
  12. Carreto, J.I., M.O. Carignan, N.G. Montoya, and D.A. Cucchi Colleoni. 2007. Ecología del fitoplancton en los sistemas frontales del Mar Argentino. Pp.11–31 in El Mar Argentino y sus recursos Pesqueros El ambiente Marino Tomo V. J.I. Carreto, and C. Bremec, eds, INIDEP, Mar del Plata, 169 pp.
  13. Collier, J.L. 2000. Flow cytometry and the single cell in phycology 1. Journal of Phycology 36(4):628–644, https://doi.org/​10.1046/j.1529-8817.2000.99215.x.
  14. Cucchi Colleoni, A.D., and J.I. Carreto. 2001. Variación estacional de la biomasa fitoplanctónica en el golfo San Jorge. Resultados de las campañas de investigación: OB-01/00, OB-03/00, OB-10/00, y OB-12/00. INIDEP Informe Técnico Interno N°49, 30 pp.
  15. Fernández, M. 2006. Características físico-químicas de los sedimentos del Golfo San Jorge y su relación con los organismos bentónicos del sector. PhD Thesis. Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
  16. Fernández, M., J.I. Carreto, J. Mora, and A. Roux. 2005. Physico-chemical characterization of the benthic environment of the Golfo San Jorge, Argentina. Journal of the Marine Biological Association of the United Kingdom 85:1,317–1,328, https://doi.org/10.1017/S002531540501249X.
  17. Fernández, M., A. Roux, E. Fernández, J. Caló, A. Marcos, and H. Aldacur. 2003. Grain-size analysis of surficial sediments from Golfo San Jorge, Argentina. Journal of the Marine Biological Association of the United Kingdom 83:1,193–1,197, https://doi.org/10.1017/S0025315403008488.
  18. Ferreira, A., V.M.T. García, and C.A.E. García. 2009. Light absorption by phytoplankton, non-algal particles and dissolved organic matter at the Patagonia shelf-break in spring and summer. Deep Sea Research Part I 56(12):2,162–2,174, https://doi.org/​10.1016/j.dsr.2009.08.002.
  19. Gagliardini, D.A., and P.C. Colón. 2004. Ocean feature detection using microwave backscatter and sun glint observations. Gayana 68(2):180–185, https://doi.org/10.4067/S0717-65382004000200033.
  20. Garcia, C., V. Garcia, and C. McClain. 2005. Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sensing of Environment 95(1):125–137, https://doi.org/10.1016/j.rse.2004.12.006.
  21. Glembocki, N.G., G.N. Williams, M.E. Góngora, D.A. Gagliardini, and J.M. (Lobo) Orensanz. 2015. Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. Journal of Sea Research 95:22–35, https://doi.org/10.1016/​j.seares.2014.10.011.
  22. Gordon, H., and A. Morel. 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, vol. 4. Springer-Verlag, and published by the American Geophysical Union as part of the Lecture Notes on Coastal and Estuarine Studies Series, 114 pp., https://doi.org/10.1029/LN004.
  23. Hancke, K., E.K. Hovland, Z. Volent, R. Pettersen, G. Johnsen, M. Moline, and E. Sakshaug. 2014. Optical properties of CDOM across the Polar Front in the Barents Sea: Origin, distribution and significance. Journal of Marine Systems 130:219–227, https://doi.org/10.1016/j.jmarsys.2012.06.006.
  24. Hoepffner, N., and S. Sathyendranath. 1992. Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western North Atlantic. Limnology and Oceanography 37(8):1,660–1,679, https://doi.org/​10.4319/lo.1992.37.8.1660.
  25. Hudson, N., A. Baker, D.M. Reynolds, C. Carliell-Marquest, and D. Ward. 2009. Changes in freshwater organic matter fluorescence intensity with freezing/thawing and dehydration/rehydration. Journal of Geophysical Research 114, G00F08, https://doi.org/10.1029/2008JG000915.
  26. IOCCG (International Ocean-Colour Coordinating Group). 2000. Remote Sensing of Ocean Colour in Coastal and Other Optically-Complex Waters. S. Sathyendranath, ed., Reports of the International Ocean-Colour Coordinating Group, No. 3, IOCCG, Dartmouth, Canada, 140 pp.
  27. IOCCG. 2006. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. Z.P. Lee, ed., Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada, 126 pp., https://doi.org/10.25607/OBP-96.
  28. Johnsen, G., and E. Sakshaug. 2007. Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse amplitude-​modulated and fast-repetition-rate fluorometry. Journal of Phycology 43:1,236–1,251, https://doi.org/​10.1111/​j.1529-8817.2007.00422.x.
  29. Kiefer, D.A., and B.G. Mitchel. 1983. A simple, steady-state model of phytoplankton production based on absorption cross-section and quantum efficiency. Limnology and Oceanography 27:492–499, https://doi.org/10.4319/lo.1983.28.4.0770.
  30. Kishino, M., N. Takahashi, N., Okami, N.S. Ichimura. 1985. Estimation of the spectral absorption coefficient of phytoplankton in the sea. Bulletin of Marine Science 37:634–642.
  31. Lee, Z., K.L. Carder, C.D. Mobley, R.G. Steward, and J.S. Patch. 1998. Hyperspectral remote sensing for shallow waters. I. A semi-analytical model. Applied Optics 37(27):6,329−6,338, https://doi.org/10.1364/AO.37.006329.
  32. Lutz, V., R. Frouin, R. Negri, R. Silva, M. Pompeu, N. Rudorff, A. Cabral, A. Dogliotti, and G. Martínez. 2016. Bio-optical characteristics along the Straits of Magallanes. Continental Shelf Research 119:56–67, https://doi.org/10.1016/j.csr.2016.03.008.
  33. Lutz, V.A., S. Sathyendranath, and E.J.H. Head. 1996. Absorption coefficient of phytoplankton: Regional variations in the North Atlantic. Marine Ecology Progress Series 135:197–213, https://doi.org/​10.3354/​meps135197.
  34. Lutz, V.A., A. Subramaniam, R.M. Negri, R.I. Silva, and J.I. Carreto. 2006. Annual variations in bio-​optical properties at the “Estación Permanente de Estudios Ambientales (EPEA)” coastal station, Argentina. Continental Shelf Research 26(10):1,093–1,112, https://doi.org/10.1016/j.csr.2006.02.012.
  35. Matano, R.P., and E.D. Palma. 2018. Seasonal variability of the oceanic circulation in the Gulf of San Jorge, Argentina. Oceanography 31(4):16–24, https://doi.org/​10.5670/oceanog.2018.402.
  36. Mitchell, B.G. 1990. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). Pp. 137–148 in Proceedings of SPIE, vol. 1302, Ocean Optics X, https://doi.org/10.1117/12.21440.
  37. Mitchell, B.G., and D.A. Kiefer. 1988. Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean. Deep Sea Research Part A 35:665–689, https://doi.org/​10.1016/0198-0149(88)90025-8.
  38. Morel, A. 1988. Optical modeling of the upper ocean in relation to its biogeneous matter content (Case 1 waters). Journal of Geophysical Research 93(C9):10,749–10,768, https://doi.org/​10.1029/JC093iC09p10749.
  39. Morel, A., and L. Prieur. 1977. Analysis of variations in ocean color. Limnology and Oceanography 22(4):709–722, https://doi.org/​10.4319/lo.1977.22.4.0709.
  40. Nelson, N.B., and P.G. Coble. 2009. Optical analysis of CDOM. Pp. 79–96 in Practical Guidelines for the Analysis of Seawater. O. Wurl, ed., CRC Press.
  41. Palma, E.D., and R.P. Matano. 2012. A numerical study of the Magellan Plume. Journal of Geophysical Research 117(C5), C05041, https://doi.org/​10.1029/2011JC007750.
  42. Preisendorfer, R.W. 1976. Hydrologic Optics, Vol. 1: Introduction. U.S. Department of Commerce, National Oceanic & Atmospheric Administration, Environmental Research Laboratories, Honolulu, Hawaii, 258 pp.
  43. Prieur, L., and S. Sathyendranath.1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnology and Oceanography 26(4):671–689, https://doi.org/​10.4319/lo.1981.26.4.0671.
  44. Rivas, A.L. 2006. Quantitative estimation of the influence of surface thermal fronts over chlorophyll concentration at the Patagonian shelf. Journal of Marine Systems 63(3–4):183–190, https://doi.org/​10.1016/j.jmarsys.2006.07.002.
  45. Rivas, A.L., and J.P. Pisoni. 2010. Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf. Journal of Marine Systems 79(1–2):134–143, https://doi.org/​10.1016/j.jmarsys.2009.07.008.
  46. Roesler, C.S., and M.J. Perry. 1995. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. Journal of Geophysical Research 100(C7):13,279–13,294, https://doi.org/​10.1029/95JC00455.
  47. Romero, S.I., A.R. Piola, M. Charo, and C.A. Eiras Garcia. 2006. Chlorophyll-a variability off Patagonia based on SeaWiFS data. Journal of Geophysical Research 111(5):1–11, https://doi.org/​10.1029/2005JC003244.
  48. Roy, S., F. Blouin, A. Jacques, and J.C. Therriault. 2008. Absorption properties of phytoplankton in the lower estuary and Gulf of St. Lawrence (Canada). Canadian Journal of Fisheries and Aquatic Sciences 65(8):1,721–1,737, https://doi.org/​10.1139/F08-089.
  49. Sakshaug, E., A. Bricaud, Y. Dandonneau, P.G. Falkowski, D.A. Kiefer, L. Legendre, L. Legendre, A. Morel, J. Parslow, and M. Takahashi. 1997. Parameters of photosynthesis: Definitions, theory and interpretation of results. Journal of Plankton Research 19:1637–1670, https://doi.org/​10.1093/​plankt/19.11.1637.
  50. Segura, V., D. Cuchi Colleoni, and V.A. Lutz. 2013a. Características Bio-ópticas del Material Particulado Total y Su Relación con la Clorofila-a en el Golfo San Jorge y Área Adyacente: Campañas OB03/2008 y OB/2009. Informe Técnico Nro. 076, Instituto Nacional de Desarrollo Pesquero, Mar del Plata (Argentina), 19 pp.
  51. Segura, V., V. Lutz, A. Dogliotti, R. Silva, R. Negri, R. Akselman, and H. Benavides. 2013b. Phytoplankton types and primary production in the Argentine Sea. Marine Ecology Progress Series 491:15–31, https://doi.org/10.3354/meps10461.
  52. Spencer, R.G.M., L. Bolton, and A. Baker. 2007. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. Water Research 41:2,491–2,950, https://doi.org/​10.1016/j.watres.2007.04.012.
  53. Spencer, R.G.M., and P.G. Coble. 2014. Sampling design for organic matter analysis. Pp. 125–146 in Aquatic Organic Matter Fluorescence. P.G. Coble, J. Lead, A. Baker, D.M. Reynolds, and R.G.M. Spencer, eds, Cambridge University Press.
  54. Strickland, J.D.H., and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Bulletin 167, Ottawa, 310 pp.
  55. Stuart, V., S. Sathyendranath, E.J.H. Head, T. Platt, B. Irwin, and H. Maass. 2000. Bio-optical characteristics of diatoms and prymnesiophyte populations in the Labrador Sea. Marine Ecology Progress Series 201:91–106, https://doi.org/10.3354/meps201091.
  56. Tomas, C.R. 1997. Identifying Marine Phytoplankton. Academic Press, 875 pp.
  57. Tremblay, G., C. Belzile, M. Gosselin, M. Poulin, S. Roy, and J.É. Tremblay. 2009. Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: Strong numerical dominance by picoeukaryotes. Aquatic Microbial Ecology 54(1):55–70, https://doi.org/10.3354/ame01257.
  58. Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Mitteilungen 9(1):1–38.
  59. Xi, H., P. Larouche, S. Tang, and C. Michel. 2013. Seasonal variability of light absorption properties and water optical constituents in Hudson Bay, Canada. Journal of Geophysical Research 118(6):3,087–3,102, https://doi.org/​10.1002/jgrc.20237.
  60. Xi, H., Z. Qiu, Y. He, and Jian W. 2007. The absorption of water color components and spectral modes in the Pearl River estuary. Chinese Journal of Oceanology and Limnology 25(4):359–366, https://doi.org/10.1007/s00343-007-0359-3.
  61. Zhang, Y., X. Liu, M. Wang, and B. Qin. 2013. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry 55:26–37, https://doi.org/10.1016/​j.orggeochem.2012.11.007.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.