Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 04

View Issue TOC
Volume 26, No. 4
Pages 116 - 127


Legacy of the US GLOBEC Program: Current and Potential Contributions to Marine Ecosystem-Based Management

By Michael J. Fogarty , Louis W. Botsford, and Francisco E. Werner 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Management of living marine resources is undergoing a profound transition toward a more holistic, ecosystem-based paradigm. The interplay of climate and environmental forcing, ecosystem structure and function, and human influences and requirements shape the dynamics of these systems in complex ways. The US Global Ocean Ecosystem Dynamics (GLOBEC) program was designed to unravel the elements of this complexity and to forge the tools needed to explore the scope for predictability of ecosystem change in a rapidly changing ocean. As a basic science program, US GLOBEC established new standards in ecological monitoring, technological development, and coupled bio-physical modeling of marine systems. Its legacy goes beyond these fundamental achievements, however, through the realized and potential importance of the GLOBEC approach and findings in resource management. Development of the US GLOBEC program considerably predated the formal adoption of strategies for ecosystem-based management of coastal and marine systems in the United States under the aegis of the National Ocean Policy. The GLOBEC strategy and its resulting products and tools have nonetheless proven extremely valuable in moving toward the goal of operational marine ecosystem-based management. The GLOBEC selection of target species of direct relevance to management (including economically important species and those with special conservation status) underscored the recognized need to provide results of the highest scientific caliber while also meeting broader societal needs and objectives for sustainable resource management. Here, we trace some of the current applications of GLOBEC science in resource management (including the extension of single species management strategies to incorporate climate forcing and the use of broader ecosystem models) and point to its potential to further shape the evolution of marine ecosystem-based management.


Fogarty, M.J., L.W. Botsford, and F.E. Werner. 2013. Legacy of the US GLOBEC program: Current and potential contributions to marine ecosystem-based management. Oceanography 26(4):116–127, https://doi.org/10.5670/oceanog.2013.79.


AIFEP (Aleutian Islands Fishery Ecosystem Plan) Team. 2007. Aleutian Islands Fishery Ecosystem Plan. North Pacific Fishery Management Council, Anchorage, AK, 190 pp. Available online at: http://www.npfmc.org/wp-content/PDFdocuments/conservation_issues/AIFEP/AIFEP12_07.pdf (accessed January 4, 2014).

Alaska Marine Ecosystem Forum. 2006. Alaska Marine Ecosystem Forum Memorandum of Understanding. Available online at: http://www.npfmc.org/wp-content/PDFdocuments/conservation_issues/AIFEP/AMEF_MOU.pdf (accessed January 4, 2014).

Barange, M., R. O’Boyle, K.L. Cochrane, M.J. Fogarty, A. Jarre, L.T. Kell, F.W. Köster, J.R. King, C.L. de Moor, K. Reid, M. Sinclair, and A. Yatsu. 2010. Marine resource management in the face of change: From ecosystem science to ecosystem management. Pp. 253–283 in Marine Ecosystems and Global Change. M. Barange, J. Field, R. Harris, E. Hofmann, I. Perry, and F. Werner, eds, Oxford University Press.

Batchelder, H.P., K.L. Daly, C.S. Davis, R. Ji, M.D. Ohman, W.T. Peterson, and J.A. Runge. 2013. Climate impacts on zooplankton population dynamics in coastal marine ecosystems. Oceanography 26(4):34–51, https://doi.org/10.5670/oceanog.2013.74.

Bjørnstad, O.N., R.M. Nisbet, and J.-M. Fromentin. 2004. Trends and cohort resonant effects in age-structured populations. Journal of Animal Ecology 73:1,157–1,167, https://doi.org/10.1111/j.0021-8790.2004.00888.x.

Botsford, L.W., J.C. Castilla, and C.H. Peterson. 1997. The management of fisheries and marine ecosystems. Science 277:509–515, https://doi.org/10.1126/science.277.5325.509.

Botsford, L.W., A. Hastings, and S.D. Gaines. 2001. Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecology Letters 4:144–150, https://doi.org/10.1046/j.1461-0248.2001.00208.x.

Botsford, L.W., M.D. Holland, J.F. Samhouri, J.W. White, and A. Hastings. 2011. Importance of age structure in models of the response of upper trophic levels to fishing and climate change. ICES Journal of Marine Science 68:1,270–1,283, https://doi.org/10.1093/icesjms/fsr042.

Botsford, L.W, C.L. Moloney, A. Hastings, J.L. Largier, T.M. Powell, K. Higgins, and J.F. Quinn. 1994. The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations. Deep-Sea Research Part II 41:107–145, https://doi.org/10.1016/0967-0645(94)90064-7.

Brander, K., L.W. Botsford, L. Ciannelli, M.J. Fogarty, M. Heath, B. Planque, L.J. Shannon, and K. Wieland. 2010. Human impacts on marine ecosystems. Pp. 41–71 in Marine Ecosystems and Global Change. M. Barange, J. Field, R. Harris, E. Hofmann, I. Perry, and F. Werner, eds, Oxford University Press.

Carlson, S.M., and W.H. Satterthwaite. 2011. Weakened portfolio effect in a collapsed salmon population complex. Canadian Journal of Fisheries and Aquatic Sciences 68:1,579–1,589, https://doi.org/10.1139/f2011-084.

Curchitser, E.N., H.P. Batchelder, D.B. Haidvogel, J. Fiechter, and J. Runge. 2013. Advances in physical, biological, and coupled ocean models during the US GLOBEC program. Oceanography 26(4):52–67, https://doi.org/10.5670/oceanog.2013.75.

deYoung, B., M. Heath, F. Werner, F. Chai, B. Megrey, and P. Monfray. 2004. Challenges of modeling decadal variability in ocean basin ecosystems. Science 304:1,463–1,466, https://doi.org/10.1126/science.1094858.

deYoung, B., F. Werner, H. Batchelder, F. Carlotti, Ø. Fiksen, E.E. Hofmann, S. Kim, H. Yamazaki, and M. Kishi. 2010. Dynamics of marine ecosystems: Integration through models of physical-biological interactions. Pp. 89–128 in Marine Ecosystems and Global Change. M. Barange, J. Field, R. Harris, E. Hofmann, I. Perry, and F. Werner, eds, Oxford University Press.

Fogarty, M.J. 1999. Essential habitat, marine reserves, and fishery management. Trends in Ecology and Evolution 14:133–134, https://doi.org/10.1016/S0169-5347(98)01579-1.

Fogarty, M.J., J. Bohnsack, and P. Dayton. 2000. Marine reserves and resource management. Pp. 283–300 in Seas at the Millennium: An Environmental Evaluation. C. Sheppard, ed, Elsevier.

Fogarty, M.J., and L.W. Botsford. 2007. Population connectivity and spatial management of marine fisheries. Oceanography 20(3):112–123, https://doi.org/10.5670/oceanog.2007.34.

Fogarty, M.J., and J.M. McCarthy, eds. 2014. The Sea, Volume 16: Marine Ecosystem-Based Management. Harvard University Press, Cambridge, MA, 568 pp.

Fogarty, M.J., and S.A. Murawski. 2005. Do marine protected areas really work? Oceanus 43:42–44. Available online at: http://www.whoi.edu/oceanus/feature/do-marine-protected-areas-really-work (accessed January 3, 2014).

Fogarty, M.J., and T.M. Powell. 2002. An Overview of the US GLOBEC program. Oceanography 15(2):4–12, https://doi.org/10.5670/oceanog.2002.17.

Fogarty, M.J., M.P. Sissenwine, and E.B. Cohen. 1991. Recruitment variability and the dynamics of exploited marine populations. Trends in Ecology and Evolution. 6:241–246, https://doi.org/10.1016/0169-5347(91)90069-A.

Hastings, A., and L.W. Botsford. 1999. Equivalence in yield from marine reserves and traditional fisheries management. Science 284:1,537-1,538, https://doi.org/10.1126/science.284.5419.1537.

Hofmann, E.E., P.H. Wiebe, D.P. Costa, and J.J. Torres. 2011, eds. Understanding the linkages between Antarctic food webs and the environment: A synthesis of Southern Ocean GLOBEC studies. Special issue Deep Sea Research Part II 58(13–16):1,505–1,507.

Huret, M., J.A. Runge, C. Chen, G. Cowles, Q. Xu, and J.M. Pringle. 2007. Dispersal modeling of fish early life stages: Sensitivity with application to Atlantic cod in the western Gulf of Maine. Marine Ecology Progress Series 347:261–274, https://doi.org/10.3354/meps06983.

Jenouvrier, S., H. Caswell, C. Barbraud, M. Holland J. Stroeve, and H. Weimerskirch. 2009. Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proceedings of the National Academy of Sciences of the United States of America 106:1,844–1,847, https://doi.org/10.1073/pnas.0806638106.

Jenouvrier, S., H. Weimerskirch, C. Barbraud, Y.-H. Park, and B. Cazelles. 2005. Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate. Proceedings of the Royal Society B 272:887–895.

Kilduff, D.P., L.W. Botsford, and S.L.H. Teo. In press. Spatial and temporal covariability in early ocean survival of Chinook salmon (Oncorhynchus tshawytscha) along the west coast of North America. ICES Journal of Marine Science.

Levin, P.S., M.J. Fogarty, G.C. Matlock, and M. Ernst. 2008. Integrated Ecosystem Assessments. US Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC-92, 20 pp. Available online at: http://www.st.nmfs.noaa.gov/iea/documents/IEA_TM92Final.pdf (accessed January 3, 2014).

Levin, P.S, M.J. Fogarty, S.A. Murawski, and D. Fluharty. 2009. Integrated ecosystem assessments: Developing the scientific basis for ecosystem-based management of the ocean. PLoS Biology 7(1):e1000014, https://doi.org/10.1371/journal.pbio.1000014.

Levin, P.S., and F.B. Schwing, eds. 2011. Technical Background for an Integrated Ecosystem Assessment of the California Current: Groundfish, Salmon, Green Sturgeon, and Ecosystem Health. US Department of Commerce, NOAA Technical Memorandum, NMFS-NWFSC-109, 330 pp. Available online at: http://www.nwfsc.noaa.gov/assets/25/1618_07122011_125959_CalCurrentIEATM109WebFinal.pdf (accessed January 3, 2014).

Lindley, S.T., C.B. Grimes, M.S. Mohr, W. Peterson, J. Stein, J.T. Anderson, L.W. Botsford, D.L. Bottom, C.A. Busack, T.K. Collier, and others. 2009. What Caused the Sacramento River Fall Chinook Stock Collapse? US Department of Commerce, NOAA Technical Memorandum. NOAA-TM-NMFS-SWFSC-447, 61 pp. Available online at http://swfsc.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-447.PDF (accessed January 3, 2014).

Livingston, P.A., K. Aydin, J. Boldt, J. Ianelli, and J. Jurado-Molina. 2005. A framework for ecosystem impacts assessment using an indicator approach. ICES Journal of Marine Science 62:592–597, https://doi.org/10.1016/j.icesjms.2004.12.016.

Lough, R.G., L.J. Buckley, F.E. Werner, J.A. Quinlan, and K. Pehrson Edwards. 2005. A general biophysical model of larval cod (Gadus morhua) growth applied to populations on Georges Bank. Fisheries Oceanography 14:241–262, https://doi.org/10.1111/j.1365-2419.2005.00330.x.

Mann, K. 2000. Ecology of Coastal Waters with Implications for Management. J. Wiley and Sons, Hoboken, 404 pp.

McLeod, K.L., J. Lubchenco, S.R. Palumbi, and A.A. Rosenberg. 2005. Scientific consensus statement on marine ecosystem-based management. Communication Partnership for Science and the Sea. Available online at: http://doc.nprb.org/web/BSIERP/EBM scientific statement.pdf (accessed January 3, 2014).

Megrey, B.A., K.A. Rose, R. Klumb, D. Hay, F.E. Werner, D.L. Eslinger, and S.L. Smith. 2007. A bioenergetics-based population dynamics model of Pacific herring (Clupea harengus pallasii) coupled to a lower trophic level nutrient-phytoplankton-zooplankton model: Description, calibration and sensitivity analysis. Ecological Modelling 202:144–164, https://doi.org/10.1016/j.ecolmodel.2006.08.020.

Micheli, F., B.S. Halpern, L.W. Botsford, and R.R.Warner. 2004. Trajectories and correlates of community change in no-take marine reserves. Ecological Applications 14:1,799–1,723, https://doi.org/10.1890/03-5260.

Mountain, D., J. Green, J. Sibunka, and D. Johnson. 2008. Growth and mortality of Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus eggs and larvae on Georges Bank, 1995–1999. Marine Ecology Progress Series 353:225–242, https://doi.org/10.3354/meps07176.

Murawski, S.A., P. Rago, and M. Fogarty. 2004. Spillover effects from temperate marine protected areas. American Fisheries Society Symposium 42:167–184.

Murawski, S.A., S.E. Wigley, M.J. Fogarty, P.J. Rago, and D.G. Mountain. 2005. Effort distribution and catch patterns adjacent to temperate MPAs. ICES Journal of Marine Science 62:1,150–1,167, https://doi.org/10.1016/j.icesjms.2005.04.005.

Murphy, E.J., and E.E. Hofmann. 2012. End-to-end in Southern Ocean ecosystems. Current Opinion in Environmental Sustainability 4:264–271, https://doi.org/10.1016/j.cosust.2012.05.005.

Murphy, E.J., E.E. Hofmann, J.L. Watkins, N.M. Johnston, A. Piñones, T. Ballerini, S.L. Hill, P.N. Trathan, G.A. Tarling, R.A. Cavanagh, and others. 2013. Comparison of the structure and function of Southern Ocean regional ecosystems: The Antarctic Peninsula and South Georgia. Journal of Marine Systems 109–110:22–42, https://doi.org/10.1016/j.jmarsys.2012.03.011.

O’Boyle, B., S. Cadrin, D. Georgianna, J. Kritzer, M. Sissenwine, M. Fogarty, C. Kellogg, and P. Fiorelli. 2012. Ecosystem-based fishery management for the New England Fishery Management Council. Paper presented at the Wakefield Symposium on Ecosystem-Based Fisheries Management. Available online at: http://seagrant.uaf.edu/conferences/2010/wakefield-ecosystems/presentations/o’boyle-new-england-fishery.pdf (accessed January 4, 2014).

Parsons, T.R., M. Takahashi, and B. Hargrave. 1984. Biological Oceanographic Processes, 3rd ed. Pergamon Press, 344 pp.

Pew Oceans Commission. 2003. America’s Living Oceans: Charting a Course for a Sea Change, A Report to the Nation. Pew Charitable Trusts, Washington, DC, 144 pp. Available online at: http://www.pewtrusts.org/our_work_report_detail.aspx?id=30009 (accessed January 4, 2014).

PFMC (Pacific Fishery Management Council). 2012. Pacific Coast Fishery Ecosystem Plan for the US Portion of the California Current Large Marine Ecosystem. Pacific Fishery Management Council, Portland, OR, 83 pp.

Pitcher, T.J., and P.J.B. Hart. 1982. Fisheries Ecology. Kluwer Academic Publishers, Norwell, MA, 414 pp.

Planque, B., J.-M. Fromentin, P. Cury, K.F. Drinkwater, S. Jennings, R.I. Perry, and S. Kifani. 2010. How does fishing alter marine populations and ecosystems sensitivity to climate? Journal of Marine Systems 79:403–417, https://doi.org/10.1016/j.jmarsys.2008.12.018.

Ruzicka, J.J., J.H. Steele, S.K. Gaichas, T. Ballerini, D.J. Gifford, R.D. Brodeur, and E.E. Hofmann. 2013. Analysis of energy flow in US GLOBEC ecosystems using end-to-end models. Oceanography 26(4):82–97, https://doi.org/10.5670/oceanog.2013.77.

Schindler, D.E., R. Hilborn, B. Chasco, C.P. Boatright, T.P. Quinn, L.A. Rogers, and M.S. Webster. 2010. Population diversity and the portfolio effect in an exploited species. Nature 465:609–613, https://doi.org/10.1038/nature09060.

Steele, J.H., J. Bisagni, J. Collie, M. Fogarty, D. Gifford, J. Link, M. Sieracki, B. Sullivan, and A. Beet. 2007. Balancing end-to-end budgets of the Georges Bank ecosystem. Progress in Oceanography 74:423–448, https://doi.org/10.1016/j.pocean.2007.05.003.

Steele, J.H, D.J., Gifford, and J.S. Collie. 2011. Comparing species and ecosystem-based estimates of fisheries yield. Fisheries Research 111:139–144, https://doi.org/10.1016/j.fishres.2011.07.009.

Tremblay, M.J., J.W. Loder, F.E. Werner, C. Naimie, F.H. Page, and M.M. Sinclair. 1994. Drift of scallop larvae on Georges Bank: A model study of the roles of mean advection, larval behavior and larval origin. Deep Sea Research Part II, 41:7–49, https://doi.org/10.1016/0967-0645(94)90061-2.

Turner, E., and D.B. Haidvogel. 2009. Taking ocean research results to applications: Examples and lessons learned from US GLOBEC. Oceanography 22(4):232–241, https://doi.org/10.5670/oceanog.2009.111.

Turner, E., D.B. Haidvogel, E.E. Hofmann, H.P. Batchelder, M.J. Fogarty, and T. Powell. 2013. US GLOBEC: Program goals, approaches, and advances. Oceanography 26(4):12–21, https://doi.org/10.5670/oceanog.2013.72.

US Commission on Ocean Policy. 2004. An Ocean Blueprint for the 21st Century. Final report. Washington, DC, 522 pp. plus appendices. Available online at: http://govinfo.library.unt.edu/oceancommission/documents/full_color_rpt/welcome.html (accessed January 4, 2014).

Werner, F.E., R.K. Cowen, and C.B. Paris. 2007. Coupled biological and physical models: Present capabilities and necessary developments for future studies of population connectivity. Oceanography 20(3):54–69, https://doi.org/10.5670/oceanog.2007.29.

WHCEQ (White House Council on Environmental Quality). 2010. Final Recommendations of the Interagency Ocean Policy Task Force. Washington, DC, 77 pp. plus appendices. Available online at: http://www.whitehouse.gov/files/documents/OPTF_FinalRecs.pdf (accessed January 4, 2014).

White, J.W., L.W. Botsford, M.L. Baskett, L.A.K. Barnett, R.J. Barr, and A. Hastings. 2011. Linking models and data in assessment of no-take reserves. Frontiers in Ecology and the Environment 9:390–399, https://doi.org/10.1890/100138.

White, J.W., L.W. Botsford, A. Hastings, and M.D. Holland. In press. Stochastic models reveal conditions for cyclic dominance in sockeye salmon populations. Ecological Monographs, https://doi.org/10.1890/12-1796.1.

White, J.W., L.W. Botsford, E.A. Moffitt, and D.T. Fischer. 2010. Decision analysis for designing marine protected areas for multiple species with uncertain fishery status. Ecological Applications 20:1,523–1,541.

Worden, L., L.W. Botsford, A. Hastings, and M.D. Holland. 2010. Frequency responses of age structured populations: Pacific salmon as an example. Theoretical Population Biology 78:239–249, https://doi.org/10.1016/j.tpb.2010.07.004.

Witherell, D., C. Pautzke, and D. Fluharty. 2000. An ecosystem-based approach for Alaska groundfish fisheries. ICES Journal of Marine Science. 57:771–777, https://doi.org/10.1006/jmsc.2000.0719.

Zador, S., and S. Gaichas, eds. 2010. Ecosystem Considerations for 2011. North Pacific Fishery Management Council, Anchorage, AK, 242 pp. Available online at: http://access.afsc.noaa.gov/reem/ecoweb/Eco2010.pdf (accessed January 4, 2014).

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.