Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 01

View Issue TOC
Volume 32, No. 1
Pages 32 - 46

OpenAccess

Keeping an Eye on Antarctic Ice Sheet Stability

By Carlota Escutia , Robert M. DeConto, Robert Dunbar, Laura De Santis, Amelia Shevenell, and Timothy Naish 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Knowledge of how the Antarctic Ice Sheet (AIS) responded in the geologic past to warming climates will provide powerful insight into its poorly understood role in future global sea level change. Study of past natural climate changes allows us to determine the sensitivity of the AIS to higher-than-present atmospheric carbon dioxide (CO2) concentrations and global temperatures, thereby providing the opportunity to improve the skill and performance of ice sheet models used for Intergovernmental Panel on Climate Change (IPCC) future projections.

Antarctic and Southern Ocean (south of 60°S latitude) marine sediment records obtained over the last 50 years by seven scientific ocean drilling expeditions have revolutionized our understanding of Earth’s climate system and the evolution and dynamics of the Antarctic ice sheets through the Cenozoic (0–65 million years ago). These records document an ice-free subtropical Antarctica between ~52 and 40 million years ago when CO2 was ~1,000 ppm; the initiation of continental-scale Antarctic ice sheets ~34 million years ago as CO2 dropped below 800 ppm; evidence for a dynamic, largely terrestrial, ice sheet driving global sea level changes of up to 40 m amplitude between 34 and 15 million years ago; and colder periods of highly dynamic, marine-based ice sheets contributing up to 20 m of global sea level rise when CO2 levels were in the range of 500–300 ppm between ~14 and 3 million years ago.

Notwithstanding these discoveries, paleoenvironmental records obtained around Antarctica are still limited in their geographical coverage and do not provide a basis for comprehensive understanding of how different sectors of Antarctica respond to climate perturbations. Transects of drill cores spanning ice-proximal to ice-distal environments across the continental margin and at sensitive locations that have been identified by models and recent observations are needed to fully understand temporal and spatial ice volume changes that result from complex ice sheet-ocean-atmosphere interactions. These records are also critical for reconstructing equator-to-pole temperature gradients through time to better understand global climate change, interhemispheric long-distance transmission of changes through the atmosphere and ocean (teleconnections), and the amplification of climate signals in the polar regions.

Future Antarctic scientific ocean drilling will remain key to obtaining records of past Antarctic Ice Sheet dynamics that can be integrated into coupled ice sheet-climate models for improved projections of sea level change. Thus, keeping an eye on ice sheet stability is critical for improving the accuracy and precision of predictions of future changes in global and regional temperatures and sea level rise.

Citation

Escutia, C., R.M. DeConto, R. Dunbar, L. De Santis, A. Shevenell, and T. Naish. 2019. Keeping an eye on Antarctic Ice Sheet stability. Oceanography 32(1):32–46, https://doi.org/10.5670/oceanog.2019.117.

References

Antarctic Treaty System. 1991. Protocol on Environmental Protection to the Antarctic Treaty, https://www.ats.aq/e/ep.htm.

Badger, M.P.S., C.H. Lear, R.D. Pancost, G.L. Foster, T.R. Bailey, M.J. Leng, and H.A. Abeis. 2013. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography and Paleoclimatology 28:42–53, https://doi.org/​10.1002/palo.20015.

Barker, P.F., J.P. Kennett, S. O’Connell, S. Berkowitz, W.R. Bryant, L.H. Burckle, P.K. Egeberg, D.K. Futterer, R.E. Gersonde, X. Golovchenko, and others. 1988. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 113. College Station, TX, https://doi.org/10.2973/odp.proc.ir.113.1988.

Barker, P.F., P. Barrett, A. Camerlenghi, A.K. Cooper, F. Davey, E. Domack, C. Escutia, W. Jokat, and P. O’Brien. 1998. Ice sheet history from Antarctic continental margin sediments: The ANTOSTRAT approach. Terra Antarctica 5: 737–760.

Barker, P.F., A. Camerlenghi, G.D. Acton, S.A. Brachfeld, E.A. Cowan, J. Daniels, E.W. Domack, C. Escutia, A.J. Evans, N. Eyles, and others. 1999. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 178. College Station, TX, https://doi.org/10.2973/odp.proc.ir.178.1999.

Barrett, P.J., ed. 1989. Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound. DRIS Bulletin, vol. 245, 254 pp.

Barrett, P.J. 2007. Cenozoic climate and sea level history from glaciomarine strata off the Victoria Land coast, Cape Roberts Project, Antarctica. Pp. 259–288 in Glacial Sedimentary Processes and Products. M.J. Hambrey, P. Christoffersen, N.F. Glasser, and B. Hubbard, eds, Special Publication of the International Association of Sedimentologists, vol. 39.

Barron, J., B. Larsen, J. Baldauf, C. Alibert, S. Berkowitz, J.-P. Caulet, S. Chambers, A. Cooper, R. Cranston, W. Dorn, and others. 1989. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 119. College Station, TX, https://doi.org/10.2973/odp.proc.ir.119.1989.

Barron, J., B. Larsen, J. Baldauf, C. Alibert, S. Berkowitz, J.-P. Caulet, S. Chambers, A. Cooper, R. Cranston, W. Dorn, and others. 1991. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 119. College Station, TX, https://doi.org/10.2973/odp.proc.sr.119.1991.

Beddow, H.M., D. Liebrand, A. Sluijs, B.S. Wade, and L.J. Lourens. 2016. Global change across the Oligocene-Miocene transition: High-resolution stable isotope records from IODP Site U1334 (equatorial Pacific Ocean). Paleoceanography and Paleoclimatology 31:81–97, https://doi.org/​10.1002/2015PA002820.

Bjil, P.K., J.A. Bendle, S.M. Bohaty, J. Pross, S. Schouten, L. Tauxe, C.E. Stickley, U. Röhl, A. Sluijs, M. Olney, and others. 2013. Onset of Eocene cooling linked to early opening of the Tasmanian Gateway. Proceedings of the National Academy of Sciences of the United States of America 110(24):9,645–9,650, https://doi.org/​10.1073/pnas.1220872110.

Bjill, P.K., A.J.P. Houben, J.D. Hartman, J. Pross, A. Salabarnada, C. Escutia, and F. Sangiorgi. 2018. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages. Climate of the Past 14:1,015–1,033, https://doi.org/10.5194/cp-14-1015-2018.

Caballero, R., and M. Huber. 2013. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proceedings of the National Academy of Sciences of the United States of America 110(35):14,162–14,167, https://doi.org/​10.1073/pnas.1303365110.

Church, M.J., E.F. DeLong, H.W. Ducklow, M.B. Karner, C.M. Preston, and D.M. Karl. 2003. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography 48:1,893–1,902, https://doi.org/10.4319/lo.2003.48.5.1893.

Colleoni, F., L. De Santis, C.S. Siddoway, A. Bergamasco, N.R. Golledge, G. Lohmann, S. Passchier, and M.J. Siegert. 2018. Spatio-temporal variability of processes across Antarctic ice-bed–ocean interfaces. Nature Communications 9:2289, https://doi.org/10.1038/s41467-018-04583-0.

Contreras, L., J. Pross, P.K. Bijl, A. Koutsodendris, J.I. Raine, B. van de Schootbrugge, and H. Brinkhuis. 2013. Early to Middle Eocene vegetation dynamics at the Wilkes Land Margin (Antarctica). Review of Palaeobotany and Palynology 197:119–142, https://doi.org/10.1016/​j.revpalbo.2013.05.009.

Cook, C.P., T. van de Flierdt, T.J. Williams, S.R. Hemming, M. Iwai, M. Kobayashi, F.R. Jimenez-Espejo, C. Escutia, J.J. González, R. McKay, and others. 2013. Dynamic behaviour of the East Antarctic Ice Sheet during Pliocene warmth. Nature Geosciences 6(9):765–769, https://doi.org/10.1038/ngeo1889.

Cooper, A.K., and P.N. Webb. 1992. International offshore studies on Antarctic Cenozoic history, glaciation and sea-level change: The ANTOSTRAT Project. Pp. 655–659 in Recent Progress in Antarctic Earth Science. Y. Yoshida, ed., Terra Scientific Publishing Company (TERRAPUB), Tokyo.

Cooper, A.K., P.E. O’Brien, and C. Richter, eds. 2004. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 188, College Station, TX, https://doi.org/10.2973/odp.proc.sr.188.2004.

Cramer, B.S., J.R. Toggweiler, M.E. Wright, and K.G. Miller. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography and Paleoclimatology 24:4216, https://doi.org/​10.1029/​2008PA001683.

DeConto, R.M., and D. Pollard. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421(6920):245–249, https://doi.org/10.1038/nature01290.

DeConto, R.M., and D. Pollard. 2016. Contribution of Antarctica to past and future sea level rise. Nature 531:591–597, https://doi.org/10.1038/nature17145.

Domack, E., A. Leventer, R. Dunbar, F. Taylor, S. Brachfeld, C. Sjunneskog, and the Leg 178 Scientific Party. 2001. Chronology of the Palmer Deep Site, Antarctic Peninsula: A Holocene paleoenvironmental reference for the circum-​Antarctic. The Holocene 11:1–9, https://doi.org/​10.1191/​095968301673881493.

Dutton, A., A.E. Carlson, A.J. Long, G.A. Milne, P. Clark, R. DeConto, B.P. Horton, S. Rahmstorf, and M.E. Raymo. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 3491:6244, https://doi.org/10.1126/science.aaa4019.

Escutia, C., M.A. Bárcena, R.G. Lucchi, O. Romero, M. Ballegeer, J.J. Gonzalez, and D. Harwood. 2009. Circum-Antarctic warming events between 4 and 3.5 Ma recorded in sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins. Global and Planetary Change 69:170–184, https://doi.org/10.1016/​j.gloplacha.2009.09.003.

Escutia, C., H. Brinkhuis, A. Klaus, and the Expedition 318 Scientists. 2011. Wilkes Land Glacial History: Cenozoic East Antarctic Ice Sheet evolution from Wilkes Land margin sediments. Proceedings of the Integrated Ocean Drilling Program, Volume 318. Integrated Ocean Drilling Program Management International Inc., Tokyo, https://doi.org/10.2204/iodp.proc.318.2011.

Escutia, C., H. Brinkhuis, and the Expedition 318 Science Party. 2014. From Greenhouse to Icehouse at the Wilkes Land Antarctic margin: IODP 318 synthesis of results. Pp. 295–328 in Earth and Life Processes Discovered from Subseafloor Environment. R. Stein, D. Blackman, F. Inagaki, and H.C. Larsen, eds, Developments in Marine Geology, vol. 7, https://doi.org/10.1016/B978-0-444-62617-2.00012-8.

Etourneau, J., G. Sgubin, L. Crosta, D. Swingedouw, V. Willmott, L. Barbara, M.-N. Houssais, S. Schouten, J. Sinninghe Damsté, H. Goose, and others. 2019. Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula. Nature Communications 10:304, https://doi.org/10.1038/s41467-018-08195-6.

Foster, G.L., C.H. Lear, and J.W.B. Rae. 2012. The evolution of pCO2, ice volume and climate during the middle Miocene. Earth and Planetary Science Letters 341–344:243–254, https://doi.org/10.1016/​j.epsl.2012.06.007.

Foster, G.L., and E.J. Rohling. 2013. Relationship between sea level and climate forcing by CO2 on geological timescales. Proceedings of the National Academy of Sciences of the United States of America 110(4):1,209–1,214, https://doi.org/10.1073/pnas.1216073110.

Foster, G.L., D.L. Royer, and D.J. Lunt. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications 8:14845, https://doi.org/10.1038/ncomms14845.

Fretwell, P., H.D. Pritchard, D.G. Vaughan, J.L. Bamber, N.E. Barrand, R. Bell, C. Bianchi, R.G. Bingham, D.D. Blankenship, G. Casassa, and others. 2013. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393, https://doi.org/10.5194/tc-7-375-2013.

Galeotti, S., R.M. DeConto, T.R. Naish, P. Stocchi, F. Florindo, M. Pagani, P.J. Barrett, S.M. Bohaty, L. Lanci, D. Pollard, and others. 2016. Clast distribution in sediment core CRP-3. PANGAEA, https://doi.org/​10.1594/​PANGAEA.858577.

Gasson, E., R.M. DeConto, and D. Pollard. 2016. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America 113(13):3,459–3,464, https://doi.org/​10.1073/​pnas.1516130113.

Golledge, N.R., C.J. Fogwill, A.N. Mackintosh, and K.M. Buckley. 2012. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proceedings of the National Academy of Sciences of the United States of America 109:16,052–16,056, https://doi.org/10.1073/pnas.1205385109.

Golledge, N.R., D.E. Kowalewski, T.R. Naish, R.H. Levy, C.J. Fogwill, and E.G.W. Gasson. 2015. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526:421–425, https://doi.org/​10.1038/nature15706.

Golledge, N.R., R.H. Levy, R.M. McKay, and T.R. Naish. 2017. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophysical Research Letters 44:2,343–2,351, https://doi.org/​10.1002/​2016GL072422.

Hambrey, M.J., W.U. Ehrmann, and B. Larsen. 1991. Cenozoic glacial record of the Prydz Bay continental shelf, East Antarctica. Pp. 77–132 in Proceedings of the Ocean Drilling Program Scientific Results, Volume 119. J. Barron, B. Larsen, et al., eds, College Station, TX, https://doi.org/10.2973/odp.proc.sr.119.200.1991.

Hartman, J.D., F. Sangiorgi, A. Salabarnada, F. Peterse, A.J.P. Houben, S. Schouten, C. Escutia, and P.K. Bijl. 2018. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions. Climate of the Past 14:1,275–1,297, https://doi.org/10.5194/cp-14-1275-2018.

Hauptvogel, D.W., S.F. Pekar, and V. Pincay. 2017. Evidence for a heavily glaciated Antarctica during the late Oligocene warming (27.8–24.5 Ma): Stable isotope records from ODP Site 690. Paleoceanography and Paleoclimatology 32:384–396, https://doi.org/​10.1002/2016PA002972.

Hayes, D.E., L.A. Frakes, P.J. Barrett, D.A. Burns, P.-H. Chen, A.B. Ford, A.G. Kaneps, E.M. Kemp, D.W. McCollum, D.J.W. Piper, and others. 1975. Site 264. Pp. 19–48 in Initial Reports of the Deep Sea Drilling Project, Volume 28. US Government Printing Office, Washington, DC, https://doi.org/​10.2973/dsdp.proc.28.101.1975.

Hillenbrand, C.D., J.S. Smith, D.A. Hodell, M. Greaves, C.R. Poole, S. Kender, M. Williams, T.J. Andersen, P.E. Jernas, H. Elderfield, and others. 2017. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature 547:43–48, https://doi.org/​10.1038/nature22995.

Holbourn, A., W. Kuhnt, M. Schulz, J.-A. Flores, and N. Andersen. 2007. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth and Planetary Science Letters 261:534–550, https://doi.org/​10.1016/​j.epsl.2007.07.026.

Houben, A.J.P., P.K. Bijl, J. Pross, S.M. Bohaty, C.E. Stickley, S. Passchier, U. Roel, S. Sugisaki, L. Tauxe, T. van de Flierdt, and others. 2013. Reorganization of the Southern Ocean plankton ecosystem at the onset of Antarctic glaciation. Science 340(6130):341–344, https://doi.org/10.1126/science.1223646.

Huybrechts, P. 1993. Glaciological modelling of the late Cenozoic East Antarctic Ice Sheet: Stability or dynamism? Geografiska Annaler. Series A, Physical Geography 75(4):221–238, https://doi.org/​10.2307/521202.

IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, eds, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 1,535 pp, https://doi.org/10.1017/CBO9781107415324.

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer, eds, IPCC, Geneva, Switzerland, 151 pp.

Kennett, J.P., R.E. Houtz, et al. 1975. Initial Reports of the Deep Sea Drilling Project, Volume 29. US Government Printing Office, Washington, DC, https://doi.org/10.2973/dsdp.proc.29.1975.

Kennett, J.P., and N.J. Shackleton. 1975. Laurentide ice sheet meltwater recorded in Gulf of Mexico deep-sea cores. Science 188:147–150, https://doi.org/​10.1126/science.188.4184.147.

Kennett, J.P. 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. Journal of Geophysical Research 82(27):3,843–3,860, https://doi.org/10.1029/JC082i027p03843.

Kennett, J.P., and L.D. Stott. 1990. Proteus and Proto-Oceanus: Ancestral Paleogene oceans as revealed from Antarctic stable isotopic results; ODP Leg 113. Pp. 865–880 in Proceedings of the Ocean Drilling Program, Scientific Results, Volume 113. P.F. Barker, PF, Kennett, et al., eds, College Station, TX, https://doi.org/10.2973/odp.proc.sr.113.188.1990.

Kennicutt, M.C., S.L. Chown, J.J. Cassano, D. Liggett, R. Massom, L.S. Peck, S.R. Rintoul, J.W.V. Storey, D.G. Vaughan, T.J. Wilson, and W.J. Sutherland. 2014. Polar research: Six priorities for Antarctic science. Nature 512:23–25, https://doi.org/​10.1038/​512023a.

Kennicutt. M.C., Y.D. Kim, M. Finnemore-Rogan, A. Anandakrishnan, S.L. Chown, S. Colwell, D. Cowan, C. Escutia, F. Frenot, J. Hall, and others. 2016. Delivering 21st century Antarctic and Southern Ocean science. Antarctic Science 28(6):407–423, https://doi.org/10.1017/S0954102016000481.

Kominz, M.A., J.V. Browning, K.G. Miller, P.J. Sugarcane, S. Mizintseva, and C.R. Scotese. 2008. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain boreholes: An error analysis. Basin Research 20(2):211–226, https://doi.org/​10.1111/j.1365-2117.2008.00354.x.

Leventer, A., E. Domack, A. Barkoukis, B. McAndrews, and J. Murray. 2002. Laminations from the Palmer Deep: A diatom-​based interpretation. Paleoceanography and Paleoclimatology 17(2):8002, https://doi.org/​10.1029/​2001PA000624.

Levy, R.H., D.M. Harwood, F. Florindo, F. Sangiorgi, R. Tripati, H. von Eynatten, E. Gasson, G. Kuhn, A. Tripati, R. DeConto, and others. 2016. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America 113:3,453–3,458, https://doi.org/10.1073/pnas.1516030113.

Levy, R.H., S.R. Meyers, T.R. Naish, N.R. Golledge, R.M. McKay, J.S. Crampton, R.M. DeConto, L. De Santis, F. Florindo, E.G.W. Gasson, and others. 2019. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nature Geosciences 12:132–137, https://doi.org/10.1038/s41561-018-0284-4.

Liebrand, D., L.J. Lourens, D.A. Hodell, B. de Boer, R.S.W. van de Wal, and H. Pälike. 2011. Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene. Climates of the Past 7:869–880, https://doi.org/10.5194/cp-7-869-2011.

McKay, R.M., T. Naish, L. Carter, C. Riesselman, R. Dunbar, C. Sjunneskog, D. Winter, F. Sangiorgi, C. Warren, M. Pagani, and others. 2012a. Antarctic and Southern Ocean influences on Late Pliocene global cooling. Proceedings of the National Academy of Sciences of the United States of America 109(17):6,423–6,428, https://doi.org/​10.1073/pnas.1112248109.

McKay, R.M., T. Naish, R. Powell, P. Barrett, F. Talarico, P. Kyle, D. Monien, G. Kuhn, C. Jackolski, and T. Williams. 2012b. Pleistocene variability of Antarctic Ice Sheet extent in the Ross Embayment. Quaternary Science Reviews 34:93–112, https://doi.org/​10.1016/​j.quascirev.2011.12.012.

McKay, R.M. P.J. Barrett, R.S. Levy, T.R. Naish, N.R. Golledge, and A. Pyne. 2015. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Philosophical Transactions of the Royal Society A 374:20140301, https://doi.org/​10.1098/​rsta.2014.0301.

McKay, R.M., L. De Santis, D.K. Kulhanek, and the Expedition 374 Scientists. 2018. Expedition 374 Preliminary Report: Ross Sea West Antarctic Ice Sheet History. International Ocean Discovery Program, 374, College Station, TX, https://doi.org/​10.14379/iodp.pr.374.2018.

Miller, K.G., J.D. Wright, and R.G. Fairbanks. 1991. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research 96(4):6,829–6,848, https://doi.org/10.1029/90JB02015.

Miller, K.G., G.S. Mountain, J.D. Wright, and J.V. Brownin. 2011. A 180 million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24(2):40–53, https://doi.org/​10.5670/oceanog.2011.26.

Miller K.G., J.D. Wright, J.V. Browning, A. Kulpecz, M. Kominz, T.R. Naish, B.S. Cramer, Y. Rosenthal, W.R. Peltier, and S. Sosdian. 2012. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 40:407–410, https://doi.org/10.1130/G32869.1.

Miller, K.G., R.E. Kopp, B.P. Horton, J.V. Browning, and A.C. Kemp. 2013. A geological perspective on sea-level rise and its impacts along the US mid-​Atlantic coast. Earth’s Future 1(1):3–18, https://doi.org/​10.1002/2013EF000135.

Naish, T.R., K.J. Woolfe, P.J. Barrett, G.S. Wilson, C. Atkins, S.M. Bohaty, C.J. Bäcker, M. Claps, F.J. Davey, G.B. Dunbar, and others. 2001. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413:719–723, https://doi.org/​10.1038/​35099534.

Naish, T., R. Powell, R. Levy, G. Wilson, R. Scherer, F. Talarico, L. Krissek, F. Niessen, M. Pompilio, T. Wilson, and others. 2009. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature 458:322–328, https://doi.org/10.1038/nature07867.

Naish, T., and G.S. Wilson. 2009. Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record. Philosophical Transactions of the Royal Society A 367:169–187, https://doi.org/10.1098/rsta.2008.0223.

National Academies of Sciences, Engineering, and Medicine. 2015. A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. National Academies Press, Washington, DC, https://doi.org/10.17226/21741.

O’Brien, P.E., A.K. Cooper, C. Richter, et al. 2001. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 188. Texas A&M University, College Station TX, https://doi.org/10.2973/odp.proc.ir.188.2001.

Orejola, N., S. Passchier, and IODP Expedition 318 Scientists. 2014. Sedimentology of lower Pliocene to upper Pleistocence diamictons from IODP Site 1358, Wilkes Land margin, and implications for East Antarctic Ice Sheet dynamics. Antarctic Science 26:183–192, https://doi.org/10.1017/S0954102013000527.

Pagani, M., Z. Liu, J. LaRiviere, and A.C. Ravelo. 2010. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geoscience 3:27–30, https://doi.org/​10.1038/ngeo724.

Pälike, H., R.D. Norris, J.O. Herrle, P.A. Wilson, H.K. Coxall, C.H. Lear, N.J. Shackleton, A.K. Tripati, and B.S. Wade. 2006. The heartbeat of the Oligocene climate system. Science 314:1,894–1,898, https://doi.org/10.1126/science.1133822.

Passchier, S. 2011. Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high-resolution record of ice-rafted debris off Prydz Bay, East Antarctica. Paleoceanography and Paleoclimatology 26, PA4204, https://doi.org/10.1029/2010PA002061.

Patterson, M.O., R. McKay, T. Naish, C. Escutia, F.J. Jimenez-Espejo, M.E. Raymo, S.R. Meyers, L. Tauxe, H. Brinkhuis, A. Klaus, and others. 2014. Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene. Nature Geoscience 7:841–847, https://doi.org/10.1038/ngeo2273.

Pollard, D., and R.M. DeConto. 2005. Hysteresis in Cenozoic Antarctic ice-sheet variations. Global and Planetary Change 45:9–21, https://doi.org/10.1016/​j.gloplacha.2004.09.011.

Pollard, D., and R.M. DeConto. 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(7236):329–332, https://doi.org/10.1038/nature07809.

Pollard, D., R.M. DeConto, and R.B. Alley. 2015. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters 412:112–121, https://doi.org/​10.1016/j.epsl.2014.12.035.

Pross, J., L. Contreras, P.K. Bijl, D.R. Greenwood, S.M. Bohaty, S. Schouten, J.A. Bendle, U. Röhl, L. Tauxe, L., J.I. Raine, and others. 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488(7409):73–77, https://doi.org/10.1038/nature11300.

Reinardy, B.T.I., C. Escutia, M. Iwai, F.J. Jimenez-Espejo, C. Cook, T. van de Flierdt, and H. Brinkhuis. 2015. Repeated advance and retreat of the East Antarctic Ice Sheet on the continental shelf during the early Pliocene warm period. Palaeogeography, Palaeoclimatology, and Palaeoecology 422:65–84, https://doi.org/10.1016/j.palaeo.2015.01.009.

Rignot, E., J. Mouginot, B. Scheuchi, M. van den Broeke, M.J. van Wessem, and M. Morlighem. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America 116(4):1,095–1,103, https://doi.org/10.1073/pnas.1812883116.

Rintoul, S.R., A. Silvano, B. Pena-Molino, E. van Wijk, M. Rosenberg, J.S. Greenbaum, and D.D. Blankenship. 2016. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances 2(12):e1601610, https://doi.org/10.1126/sciadv.1601610.

Risselmann, C., and R.B. Dunbar. 2013. Diatom evidence for the onset of Pliocene cooling from AND-1B, McMurdo Sound, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 369:136–153, https://doi.org/​10.1016/j.palaeo.2012.10.014.

Rovere, A., M.E. Raymo, J.X. Mitrovica, P.J. Hearty, M.J. O’Leary, and J.D. Inglis. 2014. The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustasy and dynamic topography. Earth and Planetary Science Letters 387:27–33, https://doi.org/​10.1016/​j.epsl.2013.10.030.

Salabarnada, A., C. Escutia, U. Röhl, C.H. Nelson, R. McKay, F.J. Jiménez-Espejo, P.K. Bijl, J.D. Hartman, M. Ikehara, S.L. Strother, and others. 2018. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation. Climate of the Past 14:991–1,014, https://doi.org/10.5194/cp-14-991-2018.

Sangiorgi, F., P.K. Bijl, S. Passchier, U. Salzmann, S. Schouten, R. McKay, R.D. Cody, J. Pross, T. van de Flierdt, S.M. Bohaty, and others. 2018. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nature Communications 9:317, https://doi.org/10.1038/s41467-017-02609-7.

Scherer, R.P., A. Aldahan, S. Tulaczyk, G. Possnert, H. Engelhardt, and B. Kamb. 1998. Pleistocene collapse of the West Antarctic Ice Sheet. Science 281:82–85, https://doi.org/10.1126/science.281.5373.82.

Shackleton, N.J., and J.P. Kennett. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analysis in DSDP Sites 277, 279, and 281. Pp. 743–755 in Initial Reports of the Deep Sea Drilling Project, Volume 29, US Government Printing Office, Washington, DC.

Shakun, J.D., L.B. Corbett, P.R. Bierman, K. Underwood, D.M. Rizzo, S.R. Zimmerman, M.W. Caffee, T. Naish, N.R. Golledge, and C.S. Hay. 2018. Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years. Nature 558:284–287, https://doi.org/10.1038/s41586-018-0155-6.

Shepherd, A., E. Ivins, E. Rignot, B. Smith, M. van den Broeke, I. Velicogna, P. Whitehouse, K. Briggs, I. Joughin, G. Krinner, and others. 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558:219–222, https://doi.org/10.1038/s41586-018-0179-y.

Shevenell, A.E., and J.P. Kennett. 2002. Antarctic Holocene climate change: A benthic foraminiferal stable isotope record from Palmer Deep. Paleoceanography and Paleoclimatology 17(2), https://doi.org/10.1029/2000PA000596.

Shevenell, A.E., A.E. Ingalls, E.W. Domack, and C. Kelly. 2011. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature 470:250–254, https://doi.org/​10.1038/nature09751.

Stott, L.D., J.P. Kennett, N.J. Shackleton, and R.M. Corfield. 1990. The evolution of Antarctic surface waters during the Paleogene: Inferences from the stable isotopic composition of planktonic foraminifers, ODP Leg 113. Pp. 849–863 in Proceedings of the Ocean Drilling Program, Scientific Results, Volume 113. P.F. Barker, J.P. Kennett, et al., College Station, TX, https://doi.org/10.2973/odp.proc.sr.113.187.1990.

Stocchi, P., C. Escutia, A.J.P. Houben, B.L.A. Vermeersen, P.K. Bijl, H. Brinkhuis, R.M. DeConto, S. Galeotti, S. Passchier, D. Pollard, and others. 2013. Relative sea level rise around East Antarctica during Oligocene glaciation. Nature Geosciences 6:380–384, https://doi.org/10.1038/ngeo1783.

Whitehead, J.M., and S.M. Bohaty. 2003. Pliocene summer sea surface temperature reconstruction using silicoflagellates from Southern Ocean ODP Site 1165. Paleoceanography and Paleoclimatology 18(3), https://doi.org/​10.1029/​2002PA000829.

Wilson, D.J., R.A. Bertram, E.F. Needham, T. van de Flierdt, K.J. Welsh, R.M. McKay, A. Mazumder, C.R. Riesselman, F.J. Jimenez-Espejo, and C. Escutia. 2018. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561:383–386, https://doi.org/10.1038/s41586-018-0501-8.

Yuan, X. 2004. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarctic Science 16(04):415–425, https://doi.org/10.1017/S0954102004002238.

Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001a. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693, https://doi.org/10.1126/science.1059412.

Zachos, J., N.J. Shackleton, J.S. Revenaugh, H. Paelike, and B.F. Flower. 2001b. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 291:274–278, https://doi.org/​10.1126/​science.1058288.

Zhang, Y.G., M. Pagani, and Z. Wang. 2016. Ring Index: A new strategy to evaluate the integrity of TEX86 paleothermometry. Paleoceanography and Paleoclimatology 31:220–232, https://doi.org/​10.1002/​2015PA002848.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.