Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 01

View Issue TOC
Volume 32, No. 1
Pages 198 - 207

OpenAccess

IODP Advances in the Understanding of Subseafloor Life

By Steven D’Hondt , Fumio Inagaki, Beth N. Orcutt, and Kai-Uwe Hinrichs 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The most recent decadal phase of scientific ocean drilling through the International Ocean Discovery Program (IODP) has resulted in paradigm-​shifting understanding of life below the seafloor. Enabled by new drilling and coring approaches, cutting-edge methodologies, and novel observatory science, IODP expeditions have significantly advanced understanding of the amount and diversity of subseafloor life, the metabolic strategies that this life uses to survive under extreme energy limitation, and consequences of this life for the Earth system. Here, we summarize highlights from recent IODP expeditions focused on life beneath the seafloor and emphasize remaining major science challenges in investigating the form and function of life in this environment.

Citation

D’Hondt, S., F. Inagaki, B.N. Orcutt, and K.-U. Hinrichs. 2019. IODP advances in understanding of subseafloor life. Oceanography 32(1):198–207, https://doi.org/10.5670/oceanog.2019.146.

References
    Bach, W., and K.J. Edwards. 2003. Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochimica et Cosmochimica Acta 67:3,871–3,887, https://doi.org/10.1016/S0016-7037(03)00304-1.
  1. Baquiran, J.-P., G.A. Ramírez, A.G. Haddad, B.M. Toner, S. Hulme, C.G. Wheat, K.J. Edwards, and B.N. Orcutt. 2016. Temperature and redox effect on mineral colonization in Juan de Fuca Ridge Flank subsurface crustal fluids. Frontiers in Microbiology 7:396, https://doi.org/10.3389/fmicb.2016.00396.
  2. Biddle, J.F., J.S. Lipp, M.A. Lever, K.G. Lloyd, K.B. Sorenson, R. Anderson, H.F. Fredricks, M. Elvert, T.J. Kelly, D.P. Schrag, and others. 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America 103:3,846–3,851, https://doi.org/10.1073/pnas.0600035103.
  3. Biddle, J.F., S. Fitz-Gibbon, S.C. Schuster, J.E. Brenchley, and C.H. House. 2008. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proceedings of the National Academy of Sciences of the United States of America 105:10,583–10,588, https://doi.org/10.1073/pnas.0709942105.
  4. Bowles, M.W., J.M. Mogollón, S. Kasten, M. Zabel, and K.-U. Hinrichs.2014. Global rates of marine sulfate reduction rates and implications for subseafloor metabolic activities. Science 344(6186): 889–891, https://doi.org/10.1126/science.1249213.
  5. Brandt, L.D., and C.H. House. 2016. Marine subsurface microbial community shifts across a hydrothermal gradient in Okinawa Trough sediments. Archaea 2016:2690329, https://doi.org/​10.1155/2016/2690329.
  6. Broecker, W.S. 1973. Interstitial water studies, Leg 15, Introduction and Summary. Pp. 1,069–1,073 in Initial Reports of the DSDP 15. N.T. Edgr, J.B. Saunders, et al., eds, US Government Printing Office, Washington, DC, https://doi.org/10.2973/dsdp.proc.15.139.1973.
  7. Ciobanu, M.C., G. Burgaud, A. Dufresne, A. Breuker, V. Rédou, S.B. Maamar, F. Gaboyer, O. Vandenabeele-Trambouze, J.S. Lipp, A. Schippers, and P. Vandenkoornhuyse. 2014. Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. The ISME Journal 8(7):1,370–1,380, https://doi.org/10.1038/ismej.2013.250.
  8. Claypool, G.E., and I.R. Kaplan. 1974. The origin and distribution of methane in marine sediments. Pp. 99–139 in Natural Gases in Marine Sediments. I.R. Kaplan, ed., Plenum Press, New York.
  9. Cowen, J., S.J. Giovannoni, F. Kenig, H.P. Johnson, D.A. Butterfield, M.S. Rappé, M. Hutnak, and P. Lam. 2003. Fluids from aging ocean crust that support microbial life. Science 299 (5603):120–123, https://doi.org/10.1126/science.1075653.
  10. D’Hondt, S., S. Rutherford, and A. Spivack. 2002. Metabolic activity of subsurface life in deep-sea sediments. Science 295:2,067–2,070, https://doi.org/​10.1126/science.1064878.
  11. D’Hondt, S., B.B. Jørgensen, D.J. Miller, A. Batzke, R. Blake, B.A. Cragg, H. Cypionka, G.R. Dickens, T. Ferdelman, K.-U. Hinrichs, and others. 2004. Distributions of microbial activities in deep subseafloor sediments. Science 306:2,216–2,221, https://doi.org/10.1126/science.1101155.
  12. D’Hondt, S., F. Inagaki, C. Alvarez Zarikian, L.J. Abrams, N. Dubois, T. Engelhardt, H. Evans, T. Ferdelman, B. Gribsholt, R.N. Harris, and others. 2015. Presence of oxygen and aerobic communities from seafloor to basement in deep-sea sediment. Nature Geoscience 8:299–304, https://doi.org/​10.1038/NGEO2387.
  13. Edwards, K.J., C.J. What, and J.B. Sylvan. 2011. Under the sea: Microbial life in volcanic oceanic crust. Nature Reviews Microbiology 9:703–712, https://doi.org/10.1038/nrmicro2647.
  14. Edwards, K.J., A.T. Fisher, and C.G. Wheat. 2012a. The deep subsurface biosphere in igneous ocean crust: Frontier habitats for microbiological exploration. Frontiers in Microbiology 3, Article 8, https://doi.org/​10.3389/​fmicb.2012.00008.
  15. Edwards, K.J., C.G. Wheat, B.N. Orcutt, S. Hulme, K. Becker, H. Jannasch, A. Haddad, T. Pettigrew, W. Rhinehart, K. Grigar, and others. 2012b. Design and deployment of borehole observatories and experiments during IODP Expedition 336, Mid-Atlantic Ridge flank at North Pond. In Proceedings of the Integrated Ocean Drilling Program, Volume 336. Edited by K.J. Edwards, W. Bach, A. Klaus, and the Expedition 336 Scientists, Integrated Ocean Drilling Program Management International, Inc., Tokyo, https://doi.org/10.2204/iodp.proc.336.109.2012.
  16. Edwards, K.J., W. Bach, A. Klaus, and IODP Expedition 336 Scientific Party. 2014. IODP Expedition 336: Initiation of long-term coupled microbiological, geochemical, and hydrological experimentation within the seafloor at North Pond, western flank of the Mid-Atlantic Ridge. Scientific Drilling 17:13–18, https://doi.org/10.5194/sd-17-13-2014.
  17. Engelen, B., K. Ziegelmueller, L. Wolf, B. Kopke, A. Gittel, H. Cypionka, T. Treude, S. Nakagawa, F. Inagaki, M.A. Lever, and B.O. Steinbu. 2008. Fluids from the oceanic crust support microbial activities within the deep biosphere. Geomicrobiology Journal 25(1):56–66, https://doi.org/​10.1080/01490450701829006.
  18. Engelhardt, T., J. Kallmeyer, H. Cypionka, and B. Engelen. 2014. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. The ISME Journal 8:1,503–1,509, https://doi.org/10.1038/ismej.2013.245.
  19. Fisher, A.T., T. Tsuji, K. Petronotis, C.G. Wheat, K. Becker, J.F. Clark, J. Cowen, K. Edwards, H. Jannasch, the IODP Expedition 327, and Atlantis Expedition AT18-07 Shipboard Parties. 2011. IODP Expedition 327 and Atlantis Expedition AT18-07: Observatories and experiments on the eastern flank of the Juan de Fuca Ridge. Scientific Drilling 13:4–11, https://doi.org/10.2204/iodp.sd.13.01.2011.
  20. Fisk, M.R., S.J. Giovannoni, and I.H. Thorseth. 1998. Alteration of oceanic volcanic glass: Textural evidence of microbial activity. Science 281:978–980, https://doi.org/10.1126/science.281.5379.978.
  21. Früh-Green, G., B.N. Orcutt, S.L. Green, C. Cotterill, S. Morgan, N. Akizawa, G. Bayrakci, J.-H. Behrmann, C. Boschi, W.J. Brazelton, and others. 2017. Expedition 357 summary. In Proceedings of the International Ocean Discovery Program, Volume 357. G.L. Früh-Green, B.N. Orcutt, S.L. Green, C. Cotterill, and the Expedition 357 Scientists, College Station, TX, https://doi.org/​10.14379/iodp.proc.357.101.2017.
  22. Früh-Green, G., B.N. Orcutt, S. Rouméjon, M.D. Lilley, Y. Moronon, C. Cotterill, S. Green, J. Escartin, B.E. John, A.M. McCaig, and others. 2018. Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357). Lithos 323:137–155, https://doi.org/​10.1016/j.lithos.2018.09.012.
  23. Glombitza, C., R.R. Adhikari, N. Riedinger, W.P. Gilhooly III, K.-U. Hinrichs, and F. Inagaki. 2016. Microbial sulfate reduction potential in coal-​bearing sediments down to ~2.5 km below the seafloor off Shimokita Peninsula, Japan. Frontiers in Microbiology 7:1576, https://doi.org/10.3389/fmicb.2016.01576.
  24. Heuer, V.B., F. Inagaki, Y. Morono, Y. Kubo, L. Maeda, and the Expedition 370 Scientists. 2017. Expedition 370 Preliminary Report: Temperature Limit of the Deep Biosphere off Muroto. International Ocean Discovery Program, https://doi.org/​10.14379/iodp.pr.370.2017.
  25. Hinrichs, K.-U., J.M. Hayes, W. Bach, A. Spivack, L.R. Hmelo, N. Holm, C.G. Johnson, and S.P. Sylva. 2006. Biological formation of ethane and propane in the deep marine subsurface. Proceedings of the National Academy of Sciences of the United States of America 103:14,684–14,689, https://doi.org/​10.1073/pnas.0606535103.
  26. Hinrichs, K.-U., F. Inagaki, V.B. Heuer, M. Kinoshita, Y. Morono, and Y. Kubo. 2016. Expedition 370 Scientific Prospectus: T-Limit of the Deep Biosphere off Muroto (T-Limit). International Ocean Discovery Program.
  27. Hoehler, T.M., and B.B. Jørgensen. 2013. Microbial life under extreme energy limitation. Nature Reviews Microbiology 11:83–94, https://doi.org/10.1038/nrmicro2939.
  28. Hoshino, T., and F. Inagaki. 2018. Abundance and distribution of Archaea in the subseafloor sedimentary biosphere. The ISME Journal 13:227–231, https://doi.org/10.1038/s41396-018-0253-3.
  29. Inagaki, F., T. Nunoura, S. Nakagawa, A. Teske, M. Lever, A. Lauer, M. Suzuki, K. Takai, M. Delwiche, F.S. Colwell, K.H. Nealson, K. Horikoshi, S. D’Hondt, and B.B. Jørgensen. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences of the United States of America 103(8):2,815–2,820, https://doi.org/10.1073/pnas.0511033103.
  30. Inagaki, F., K.-U. Hinrichs, Y. Kubo, and the Expedition 337 Scientists. 2013. Proceedings of the Integrated Ocean Drilling Program, Volume 337. Integrated Ocean Drilling Program Management International Inc., Tokyo, https://doi.org/10.2204/iodp.proc.337.2013.
  31. Inagaki, F., K.-U. Hinrichs, Y. Kubo, M.W. Bowles, V.B. Heuer, W.-L. Long, T. Hoshino, A. Ijiri, H. Imachi, M. Ito, and others. 2015. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424, https://doi.org/10.1126/science.aaa6882.
  32. IODP (International Ocean Discovery Program). 2011. Illuminating Earth’s Past, Present, and Future: Science Plan for 2013–2023. Integrated Ocean Drilling Program Management International, Washington, DC, https://www.iodp.org/about-iodp/iodp-science-plan-2013-2023.
  33. Jørgensen, S.L., and R. Zhao. 2016. Microbial inventory of deeply buried oceanic crust from a young ridge flank. Frontiers in Microbiology, https://doi.org/​10.3389/fmicb.2016.00820.
  34. Kallmeyer, J., R. Pockalny, R.R. Adhikari, D.C. Smith, and S. D’Hondt. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America 109:16,213–16,216, https://doi.org/10.1073/pnas.1203849109.
  35. LaBonté, J.M., M.A. Lever, K.J. Edwards, and B.N. Orcutt. 2017. Influence of igneous basement on deep sediment microbial diversity on the eastern Juan de Fuca Ridge flank. Frontiers in Microbiology 8:1434, https://doi.org/10.3389/fmicb.2017.01434.
  36. LaRowe, D.E., E. Burwiicz, S. Arndt, A.W. Dale, and J.P. Amend. 2017. Temperature and volume of global marine sediments. Geology 45:275–278, https://doi.org/10.1130/G38601.1.
  37. Lever, M.A., O.J. Rouxel, J.C. Alt, N. Shimizu, S. Ono, R.M. Coggon, W.C. Shanks III, L. Lapham, M. Elvert, X. Prieto-Mollar, and others. 2013. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt. Science 339(6125):1,305–1,308, https://doi.org/10.1126/science.1229240.
  38. Lipp, J.S., Y. Morono, F. Inagaki, and K.-U. Hinrichs. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994, https://doi.org/10.1038/nature07174.
  39. Liu, C.-H., X. Huang, T.-N. Xie, N. Duan, Y.-R. Xue, T.-X. Zhao, M.A. Lever, K.-U. Hinrichs, and F. Inagaki. 2016. Exploration of cultivable fungal communities in deep coal-bearing sediments from ~1.3 to 2.5 km below the ocean floor. Environmental Microbiology 19:803–818, https://doi.org/​10.1111/​1462-2920.13653.
  40. Lloyd, M.K. 2018. Clumped and Intramolecular Isotopic Perspectives on the Behavior of Organic and Inorganic Carbon in the Shallow Crust and Deep Biosphere. PhD dissertation, California Institute of Technology, https://doi.org/10.7907/Z96T0JV5.
  41. Lomstein, B.A., A.T. Langerhuus, S. D’Hondt, B.B. Jørgensen and A.J. Spivack. 2012. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484:101–104, https://doi.org/10.1038/nature10905.
  42. MacLeod, C.J., H.J.B. Dick, P. Blum, N. Abe, D.K. Blackman, J.A. Bowles, M.J. Cheadle, K. Cho, J. Ciążela, J.R. Deans, and others. 2017. Site U1473. In Southwest Indian Ridge Lower Crust and Moho. Proceedings of the International Ocean Discovery Program, vol. 360. Edited by C.J. MacLeod, H.J.B. Dick, P. Blum, and the Expedition 360 Scientists, College Station, TX, https://doi.org/​10.14379/iodp.proc.360.103.2017.
  43. McCarthy, M.D., S.R. Beaupré, B.D. Walker, I. Voparil, T.P. Guilderson, and E.R.M. Druffel. 2011. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nature Geoscience 4(1):32–36, https://doi.org/​10.1038/ngeo1015.
  44. Meyer, J.L., U. Jaekel, B.J. Tully, B.T. Glazer, C.G. Wheat, H.-T. Lin, C.-C. Hsieh, J.P. Cowen, S.M. Hulme, P.R. Girguis, and J.A. Huber. 2016. A distinct and active bacterial community in cold oxygenated fluids circulating beneath the western flank of the Mid-Atlantic Ridge. Scientific Reports 6:22541, https://doi.org/10.1038/srep22541.
  45. Morita, R.Y., and C.E. ZoBell. 1955. Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep Sea Research 3:66–73, https://doi.org/10.1016/0146-6313(55)90036-8.
  46. Morono, Y., T. Terada, J. Kallmeyer, and F. Inagaki. 2013. An improved cell separation technique for marine subsurface sediments: Applications for high-throughput analysis using flow cytometry and cell sorting. Environmental Microbiology 15:2,841–2,849, https://doi.org/​10.1111/​1462-2920.12153.
  47. Morono, Y., and F. Inagaki. 2016. Analysis of low-​biomass microbial communities in the deep biosphere. Advances in Applied Microbiology 95:149–178, https://doi.org/10.1016/bs.aambs.2016.04.001.
  48. Morono, Y., T. Hoshino, T. Terada, T. Suzuki, T. Sato, H. Yuasa, Y. Kubota, and F. Inagaki. 2018. Assessment for capacity to capture DNA aerosols by clean filters for molecular biology experiments. Microbes and Environment 33:222–226, https://doi.org/​10.1264/​jsme2.ME18012.
  49. Nigro, O.D., S.P. Jungbluth, H.-T. Lin, C.-C. Hsieh, J.A. Miranda, C.R. Schvarcz, M.S. Rappé, and G.F. Steward. 2017. Viruses in the oceanic basement. mBio, https://doi.org/10.1128/mBio.02129-16.
  50. Orcutt, B.N., W. Bach, K. Becker, A.T. Fisher, M. Hentscher, and B.M. Toner, C.G. Wheat, and K.J. Edwards. 2011a. Colonization of subsurface microbial observatories deployed in young ocean crust. The ISME Journal 5:692–703, https://doi.org/​10.1038/ismej.2010.157.
  51. Orcutt, B.N., J.B. Sylvan, N.J. Knab, and K.J. Edwards. 2011b. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiology and Molecular Biology Reviews 75(2):361–422, https://doi.org/10.1128/MMBR.00039-10.
  52. Orcutt, B.N., C.G. Wheat, O.J. Rouxel, S. Hulme, K.J. Edwards, and W. Bach. 2013. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nature Communications 4:2539, https://doi.org/10.1038/ncomms3539.
  53. Oremland, R.S., C. Culbertson, and B.R.T. Simoneit. 1982. Methanogenic activity in sediment from Leg 64, Gulf of California. Pp. 759–762 in Initial Reports of the Deep Sea Drilling Project, Volume 64. US Government Printing Office, Washington, DC, https://doi.org/10.2973/dsdp.proc.64.122.1982.
  54. Orsi, W., V. Edgcomb, G. Christman, and J. Biddle. 2013. Gene expression in the deep biosphere. Nature 499:205–208, https://doi.org/10.1038/nature12230.
  55. Parkes, R.J., B.A. Cragg, S.J. Bale, J.M. Getliff, K. Goodman, P.A. Rochelle, J.C. Fry, A.J. Weightman, and S.M. Harvey. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413, https://doi.org/​10.1038/​371410a0.
  56. Parkes, R.J., B.A. Cragg, and P. Wellsbury. 2000. Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeology Journal 8:11–28, https://doi.org/​10.1007/PL00010971.
  57. Parkes, R.J., G. Webster, B.A. Cragg, A.J. Weightman, C.J. Newberry, T.G. Ferdelman, J. Kallmeyer, B.B. Jorgensen, I.W. Aiello, and J.C. Fry. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394, https://www.nature.com/articles/nature03796.
  58. Reese, B.K., L.A. Zinke, M.S. Sobol, D.E. LaRowe, B.N. Orcutt, X. Zhang, U. Jaekel, F. Wang, T. Dittmar, D. Defforey, and others. 2018. Nitrogen cycling potential of active bacteria within oligotrophic sediment of the Mid-Atlantic Ridge flank. Geomicrobiology Journal 35:468–483, https://doi.org/​10.1080/​01490451.2017.1392649.
  59. Robador, A., D.E. LaRowe, S.P. Jungbluth, H.-T. Lin, M.S. Rappé, K.H. Nealson, and J.P. Amend. 2016. Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids. Frontiers in Microbiology 7:454, https://doi.org/​10.3389/​fmicb.2016.00454.
  60. Schippers, A., L.N. Neretin, J. Kallmeyer, T.G. Ferdelman, B.A. Cragg, R.J. Parkes, and B.B. Jorgensen. 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864, https://doi.org/10.1038/nature03302.
  61. Schippers, A., and L.N. Neretin. 2006. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environmental Microbiology 8:1,251–1,260, https://doi.org/​10.1111/​j.1462-2920.2006.01019.x.
  62. Shah Walter, S.R., U. Jaekel, H. Osterholz, A.T. Fisher, J.A. Huber, A. Pearson, T. Dittmar, and P.R. Girguis. 2018. Microbial decomposition of marine dissolved organic matter in cool oceanic crust. Nature Geoscience 11:334–339, https://doi.org/10.1038/s41561-018-0109-5.
  63. Smith, A., R. Popa, M.R. Fisk, M. Nielsen, C.G. Wheat, H.W. Jannasch, A.T. Fisher, K. Becker, S.M. Sievert, and G. Flores. 2011. In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow-through device. Geochemistry, Geophysics, Geosystems 12(6), Q06007, https://doi.org/10.1029/2010GC003424.
  64. Smith, D.C., A.J. Spivack, M.R. Fisk, S.A. Haveman, H. Staudigel, and ODP Leg 185 Shipboard Science Party. 2000. Tracer-based estimates of drilling-​induced microbial contamination of deep sea crust. Geomicrobiology Journal 17:207–219, https://doi.org/​10.1080/​01490450050121170.
  65. Sørensen, K.B., and A. Teske. 2006. Stratified communities of active archaea in deep marine subsurface sediments. Applied and Environmental Microbiology 72:4,596–4,603, https://doi.org/​10.1128/AEM.00562-06.
  66. Sylvan, J.B., C.L. Hoffman, L.M. Momper, B.M. Toner, J.P. Amend, and K.J. Edwards. 2015. Bacillus rigiliprofundi sp. nov., an endospore-​forming Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust. International Journal of Systematic and Evolutionary Microbiology 65:1,992–1,998, https://doi.org/​10.1099/ijs.0.000211.
  67. Takai, K., K. Nakamura, T. Toki, U. Tsunogai, M. Miyazaki, J. Miyazaki, H. Hirayama, S. Nakagawa, T. Nunoura, and K. Horikoshi. 2008. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America 105:10,949–10,954, https://doi.org/​10.1073/​pnas.0712334105.
  68. Tanikawa, W., O. Tadai, S. Morita, W. Lin, Y. Yamada, Y. Sanada, K. Moe, Y. Kubo, and F. Inagaki. 2016. Thermal properties and thermal structure in the deep-water coalbed basin off the Shimokita Peninsula, Japan. Marine and Petroleum Geology 73:445–461, https://doi.org/10.1016/​j.marpetgeo.2016.03.006.
  69. Tanikawa, W., O. Tadai, Y. Morono, K.-U. Hinrichs, and F. Inagaki. 2018. Geophysical constraints on microbial biomass in subseafloor sediments and coal seams down to 2.5 km off Shimokita Peninsula, Japan. Progress in Earth and Planetary Science 5:58, https://doi.org/10.1186/s40645-018-0217-2.
  70. Tarafa, M.E., and J.K. Whelan. 1987. Evidence of microbiological activity in Leg 95 (New Jersey Transect) sediments. Pp. 635–640 in Initial Reports of the Deep Sea Drilling Project, Volume 95. US Government Printing Office, Washington, DC, https://doi.org/10.2973/dsdp.proc.95.125.1987.
  71. Thomson, I.D., S.C. Brassell, G. Eglinton, and J.R. Maxwell. 1982. Preliminary lipid analysis of section 481-2-2. Pp. 913–919 in Initial Reports of the Deep Sea Drilling Project, Volume 64. US Government Printing Office, Washington, DC.
  72. Torsvik, T., H. Furnes, K. Muehlenbachs, I.H. Thorseth, and O. Tumyr. 1998. Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth and Planetary Science Letters 162:165–176, https://doi.org/10.1016/S0012-821X(98)00164-2.
  73. Trembath-Reichert, E., Y. Morono, A. Ijiri, T. Hoshino, K.S. Dawson, F. Inagaki, and V.J. Orphan. 2017. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proceedings of the National Academy of Sciences of the United States of America 114:E9206–E9215, https://doi.org/10.1073/pnas.1707525114.
  74. Tully, B.J., C.G Wheat, B.T. Glazer, and J.A. Huber. 2017. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. The ISME Journal 12:1–16, https://doi.org/10.1038/ismej.2017.187.
  75. Walsh, E.A., J.B. Kirkpatrick, R. Pockalny, J. Sauvage, A.J. Spivack, R.W. Murray, M.L. Sogin, and S. D’Hondt. 2016. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Applied and Environmental Microbiology 82(16):4,994–4,999, https://doi.org/​10.1128/​AEM.00809-16.
  76. Whelan, J.K., R. Oremland, M. Tarafa, R. Smith, R. Howarth, and C. Lee. 1986. Evidence for sulfate-​reducing and methane-producing microorganisms in sediments from Sites 618, 619, and 222. Pp. 767–775 in Initial Reports of the Deep Sea Drilling Project Volume 96, US Government Printing Office, Washington, DC, https://doi.org/10.2973/dsdp.proc.96.147.1986.
  77. Yanagawa, K., A. Ijiri, A. Breuker, S. Sakai, Y. Miyoshi, S. Kawagucci, T. Noguchi, M. Hirai, A. Schippers, J.-I. Ishibashi, and others. 2016. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor. The ISME Journal 11:529–542, https://doi.org/10.1038/ismej.2016.119.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.