Oceanography The Official Magazine of
The Oceanography Society
Volume 23 Issue 01

View Issue TOC
Volume 23, No. 1
Pages 42 - 57

OpenAccess

Intraplate Seamounts as a Window into Deep Earth Processes

By Anthony A.P. Koppers  and Anthony B. Watts 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Seamounts are windows into the deep Earth that are helping to elucidate various deep Earth processes. For example, thermal and mechanical properties of oceanic lithosphere can be determined from the flexing of oceanic crust caused by the growth of seamounts on top of it. Seamount trails also are excellent recorders of absolute plate tectonic motions and provide key insights into the relationships among plate motion, plume motion, whole-Earth motion, and mantle convection. And, because seamounts are created from the partial melts of deep mantle sources, they offer unique glimpses into the chemical development and heterogeneity of Earth’s deepest regions. Current research efforts focus on resolving the fundamental differences between magmas generated by passive upwelling from upper mantle regions and deep mantle plumes rising from the core-mantle boundary, mapping the different modes of mantle plumes and mantle convection, reconciling fixed and nonfixed mantle plumes, and understanding the prolonged volcanic evolution of seamounts. The role of intraplate seamounts is pivotal to this research, and we must collect vast amounts more geochemical and geophysical data to advance our knowledge. These data needs leave the ocean wide open for future seamount exploration.

Citation

Koppers, A.A.P., and A.B. Watts. 2010. Intraplate seamounts as a window into deep earth processes. Oceanography 23(1):42–57, https://doi.org/10.5670/oceanog.2010.61.

References
    Albarede, F., and R.D. van der Hilst. 2002. Zoned mantle convection. Philosophical Transactions of the Royal Society of London A 360:2,569–2,592.
  1. Ali, M.Y., A.B. Watts, and I. Hill. 2003. A seismic reflection profile study of lithospheric flexure in the vicinity of the Cape Verde Islands. Journal of Geophysical Research 108(B5), 2239, https://doi.org/10.1029/2002JB002155.
  2. Allègre, C.J. 1982. Chemical geodynamics. Tectonophysics 81:109–132.
  3. Allègre, C.J., and D.L. Turcotte. 1986. Implications of a two-component marble-cake mantle. Nature 323:123–127.
  4. Anderson, D.L. 2000. The thermal state of the upper mantle: No role for mantle plumes. Geophysical Research Letters 27(22):3,623–3,626.
  5. Batiza, R. 1982. Abundances, distribution and sizes of volcanoes in the Pacific Ocean and implications for the origin of non-hotspot volcanoes. Earth and Planetary Science Letters 60:195–206.
  6. Batiza, R., Y. Niu, and W.C. Zayac. 1990. Chemistry of seamounts near the East Pacific Rise: Implications for the geometry of subaxial mantle flow. Geology 18:1,122–1,125.
  7. Batiza, R., and D. Vanko. 1984. Petrology of young Pacific seamounts. Journal of Geophysical Research 89:11,235–11,260.
  8. Boyet, M., and R.W. Carlson. 2006. A new geochemical model for the Earth’s mantle inferred from (SM)-S-146-Nd-142 systematics. Earth and Planetary Science Letters 250(1–2):254–268.
  9. Canales, J.P., J.J. Dañobeitia, and A.B. Watts. 2000. Wide-angle seismic constraints on the internal structure of Tenerife, Canary Islands. Journal of Volcanology and Geothermal Research 103(1–4):65–81.
  10. Cande, S.C., C.A. Raymond, J. Stock, and W.F. Haxby. 1995. Geophysics of the Pitman Fracture Zone and Pacific-Antarctic Plate Motions during the Cenozoic. Science 270(5238):947–953.
  11. Caress, D.W., M.K. McNutt, R.S. Detrick, and J.C. Mutter. 1995. Seismic imaging of hotspot-related crustal underplating beneath the Marquesas Islands. Nature 373(6515):600–603.
  12. Castillo, P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature 336:667–670.
  13. Charvis, P., A. Laesanpura, J. Gallart, A. Hirn, J.C. Lepine, B. de Voogd, T.A. Minshull, Y. Hello, and B. Pontoise. 1999. Spatial distribution of hotspot material added to the lithosphere under La Reunion, from wide-angle seismic data. Journal of Geophysical Research 104(B2):2,875–2,893.
  14. E. Contreras-Reyes, I. Grevemeyer, A.B. Watts, L. Planert, E.R. Flueh, and C. Peirce. Crustal intrusion beneath the Louisville hotspot track. Earth and Planetary Science Letters 289(2010):323–333, https://doi.org/10.1016/ j.epsl.2009.11.020.
  15. Clague, D.A., and G.B. Dalrymple. 1987. The Hawaiian-Emperor volcanic chain: Part I. Geologic evolution. Pp. 5–54 in Volcanism in Hawaii. R.W. Decker, T.L. Wright, and P.H. Stauffer, eds, US Geological Survey Professional Paper 1350.
  16. Clague, D.A., G.B. Dalrymple, T.L. Wright, F.W. Klein, R.Y. Koyanagi, R.W. Decker, and D.M. Thomas. 1989. The Hawaiian-Emperor chain. Pp. 187–287 in The Geology of North America: The Eastern Pacific Ocean and Hawaii. E.L. Winterer, D.M. Hussong, and R.W. Decker, eds, Geological Society of America, Boulder, CO.
  17. Class, C., and A.P. le Roex. 2006. Continental material in the shallow oceanic mantle: How does it get there? Geology 34(3):129–132.
  18. Class, C., and A.P. le Roex. 2008. Ce anomalies in Gough Island lavas: Trace element characteristics of a recycled sediment component. Earth and Planetary Science Letters 265(3–4):475–486.
  19. Clouard, V., and M. Gerbault. 2008. Break-up spots: Could the Pacific open as a consequence of plate kinematics? Earth and Planetary Science Letters 265(1–2):195–208.
  20. Courtier, A.M., M.G. Jackson, J.F. Lawrence, Z. Wang, C.T.A. Lee, R. Halama, J.M. Warren, R. Workman, W. Xu, M.M. Hirschmann, and others. 2007. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth and Planetary Science Letters 264(1–2):308–316.
  21. Courtillot, V., A. Davaille, J. Besse, and J. Stock. 2003. Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters 205(3–4):295–308, https://doi.org/10.1016/S0012-821X(02)01048-8.
  22. Courtney, R.C., and R.S. White. 1986. Anomalous heat-flow and geoid across the Cape-Verde Rise: Evidence for dynamic support from a thermal plume in the mantle. Geophysical Journal of the Royal Astronomical Society 87(3):815–867.
  23. Davaille, A., and J. Vatteville. 2005. On the transient nature of mantle plumes. Geophysical Research Letters 32, L14309, https://doi.org/10.1029/2005GL023029.
  24. Davies, D.R., and J.H. Davies. 2009. Thermally-driven mantle plumes reconcile multiple hot-spot observations. Earth and Planetary Science Letters 278(1–2):50–54.
  25. Davies, G.F. 1988. Ocean bathymetry and mantle convection: 1. Large-scale flow and hotspots. Journal of Geophysical Research 93(B9):10,467–10,480.
  26. Davis, A.S., L.B. Gray, D.A. Clague, and J.R. Hein. 2002. The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochemistry Geophysics Geosystems 3, https://doi.org/10.1029/2001GC000190.
  27. Detrick, R.S., R.P. Von Herzen, B. Parsons, D. Sandwell, and M. Dougherty. 1986. Heat-flow observations on the Bermuda Rise and thermal models of midplate swells. Journal of Geophysical Research 91(B3):3,701–3,723.
  28. Duncan, R.A., and R.A. Keller. 2004. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197. Geochemistry, Geophysics, Geosystems 5, Q08L03, https://doi.org/10.1029/ 2004GC000704.
  29. Duncan, R.A., M.T. McCulloch, H.G. Barsczus, and D.R. Nelson. 1986. Plume versus lithospheric sources for melts at Ua Pou, Marquesas Islands. Nature 322(6079):534–538.
  30. Duncan, R.A., J.A. Tarduno, and D.W. Scholl. 2006. Leg 197 Synthesis: Southward motion and geochemical variability of the Hawaiian Hotspot. In: Proceedings of the Ocean Drilling Program, Scientific Results. R.A. Duncan, J.A. Tarduno, T.A. Davies and D.W. Scholl, eds. Available online at: http://www-odp.tamu.edu/publications/197_SR/synth/synth.htm (accessed December 15, 2009).
  31. Farnetani, C.G., and H. Samuel. 2003. Lagrangian structures and stirring in the Earth’s mantle. Earth and Planetary Science Letters 206(3–4):335–348.
  32. Farnetani, C.G., and H. Samuel. 2005. Beyond the thermal plume paradigm. Geophysical Research Letters 32, L07311, https://doi.org/10.1029/2005GL022360
  33. Finn, C.A., R.D. Müller, and K.S. Panter. 2005. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochemistry, Geophysics, Geosystems 6, Q02005, https://doi.org/10.1029/ 2004GC000723.
  34. Fisher, A.T., and C.G. Wheat. 2010. Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flanks. Oceanography 23(1):74–87.
  35. Forsyth, D.W., N. Harmon, D.S. Scheirer, and R.A. Duncan. 2006. Distribution of recent volcanism and the morphology of seamounts and ridges in the GLIMPSE study area: Implications for the lithospheric cracking hypothesis for the origin of intraplate, non-hot spot volcanic chains. Journal of Geophysical Research 111, B11407, https://doi.org/10.1029/2005JB004075.
  36. Foulger, G.R., and J.H. Natland. 2003. Is “hotspot” volcanism a consequence of plate tectonics? Science 300(5621):921–922, https://doi.org/10.1126/science.1083376.
  37. Galer, S.J.G., and R.K. O’Nions. 1985. Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature 316:778–782.
  38. Goodwillie, A.M. 1995. Short-wavelength gravity lineations and unusual flexure results at the Puka Puka volcanic ridge system. Earth and Planetary Science Letters 136(3–4):297–314.
  39. Griffiths, R.W., and I.H. Campbell. 1991. On the dynamics of long-lived plume conduits in the convecting mantle. Earth and Planetary Science Letters 103:214–227.
  40. Harris, R.N., and M.K. McNutt. 2007. Heat flow on hot spot swells: Evidence for fluid flow. Journal of Geophysical Research B: Solid Earth 112, B03407, https://doi.org/10.1029/2006JB004299.
  41. Hart, S.R. 1971. K, Rb, Cs, Sr and Ba contents and Sr isotope ratios of ocean floor basalts. Philosophical Transactions of the Royal Society of London A 268(1192):573–587, https://doi.org/10.1098/rsta.1971.0013.
  42. Hart, S.R. 1984. A large scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757.
  43. Hart, S.R. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth and Planetary Science Letters 90:273–296.
  44. Hart, S.R., E.H. Hauri, L.A. Oschmann, and J.A. Whitehead. 1992. Mantle plumes and entrainment: Isotopic evidence. Science 256(5056):517–520.
  45. Hart, S.R., J.-G. Schilling, and J.L. Powell. 1973. Basalts from Iceland and along Reykjanes Ridge: Sr isotope geochemistry. Nature 246(155):104–107.
  46. Hawkesworth, C.J., and A.I.S. Kemp. 2006. Evolution of the continental crust. Nature 443(7113):811–817.
  47. Hawkesworth, C.J., N.W. Rogers, P.W.C. van Calsteren, and M.A. Menzies. 1984. Mantle enrichment processes. Nature 311:331–335.
  48. Herzberg, C., P.D. Asimow, N. Arndt, Y.L. Niu, C.M. Lesher, J.G. Fitton, M.J. Cheadle, and A.D. Saunders. 2007. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems 8, Q02006, https://doi.org/10.1029/2006GC001390.
  49. Hess, H.H. 1946. Drowned ancient islands of the Pacific basin. American Journal of Science 244:772–791.
  50. Hillier, J.K. 2007. Pacific seamount volcanism in space and time. Geophysical Journal International 168(2):877–889.
  51. Hillier, J.K., and A.B. Watts. 2007. Global distribution of seamounts from ship-track bathymetry data. Geophysical Research Letters 34, L13304, https://doi.org/10.1029/2007GL029874.
  52. Hofmann, A.W. 2003. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. Pp. 61–101 in The Mantle and Core. R.W. Carlson, ed., Treatise on Geochemistry, vol. 2, Elsevier-Pergamon, Oxford.
  53. Hofmann, A.W., and W.M. White. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters 57:421–436.
  54. Jackson, E.D., E.A. Silver, and G.B. Dalrymple. 1972. Hawaiian-Emperor chain and its relation to Cenozoic circumpacific tectonics. Geological Society of America Bulletin 83:601–618.
  55. Jackson, M.G., S.R. Hart, A.A.P. Koppers, H. Staudigel, J. Konter, J. Blusztajn, M.D. Kurz, and J.A. Russell. 2007. The return of subducted continental crust in Samoan lavas. Nature 448:684–687, https://doi.org/10.1038/nature06048.
  56. Jacobsen, S.B., and G.J. Wasserburg. 1979. Mean age of mantle and crustal reservoirs. Journal of Geophysical Research 84:7,411–7,427.
  57. Keller, R.A., D.W. Graham, K.A. Farley, R.A. Duncan, and J.E. Lupton. 2004. Cretaceous-to-recent record of elevated 3He/4He along the Hawaiian-Emperor volcanic chain. Geochemistry, Geophysics, Geosystems 5, Q12L05, https://doi.org/10.1029/2004GC000739.
  58. Kelley, K.A., T. Plank, L. Farr, J. Ludden, and H. Staudigel. 2005. Subduction cycling of U, Th and Pb. Earth and Planetary Science Letters 234(3–4):369–383.
  59. Kellogg, L.H., B.H. Hager, and D. van der Hilst. 1999. Compositional stratification in the deep mantle. Science 283:1,881–1,884.
  60. Konter, J.G., B.B. Hanan, J. Blichert-Toft, A.P.P. Koppers, T. Plank, and H. Staudigel. 2008. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth and Planetary Science Letters 275(3–4):285–295.
  61. Koppers, A.A.P., and H. Staudigel. 2005. Asyn-chronous bends in Pacific seamount trails: A case for extensional volcanism? Science 307:904–907, https://doi.org/10.1126/science.1107260.
  62. Koppers, A.A.P., R.A. Duncan, and B. Steinberger. 2004. Implications of a non-linear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hotspots. Geochemistry, Geophysics, Geosystems 5(6), Q06L02, https://doi.org/10.1029/2003GC000671.
  63. Koppers, A.A.P., J.P. Morgan, J.W. Morgan, and H. Staudigel. 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters 185(3–4):237–252.
  64. Koppers, A.A.P., J.A. Russell, M. Jackson, J. Konter, H. Staudigel, and S.R. Hart. 2008. Samoa reinstated as a primary hotspot trail. Geology 36(6):435–438, https://doi.org/10.1130/G24630A.1.
  65. Koppers, A.A.P., H. Staudigel, J. Phipps Morgan, and R.A. Duncan. 2007. Non-linear 40Ar/39Ar age systematics along the Gilbert Ridge and Tokelau Seamount Trail and the timing of the Hawaii-Emperor Bend. Geochemistry, Geophysics, Geosystems, 8, Q06L13, https://doi.org/10.1029/2006GC001489.
  66. Koppers, A.A.P., H. Staudigel, M.S. Pringle, and J.R. Wijbrans. 2003. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochemistry, Geophysics, Geosystems 4(10), 1089, https://doi.org/10.1029/2003GC000533.
  67. Koppers, A.A.P., H. Staudigel, J.R. Wijbrans, and M.S. Pringle. 1998. The Magellan seamount trail: Implications for Cretaceous hotspot volcanism and absolute Pacific Plate motion. Earth and Planetary Science Letters 163(1–4):53–68.
  68. Lin, S.C., and P.E. van Keken. 2006a. Deformation, stirring and material transport in thermochemical plumes. Geophysical Research Letters 33, L20306, https://doi.org/10.1029/2006GL027037.
  69. Lin, S.C., and P.E. van Keken. 2006b. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochemistry, Geophysics, Geosystems 7, Q03003, https://doi.org/10.1029/2005GC001072.
  70. Lindle, M.E., L.E. Colwell, A.A.P. Koppers, and R.A. Duncan. 2008. Evidence for differential Hawaiian and Louisville plume motions based on 40Ar/39Ar geochronology. Eos, Transactions, American Geophysical Union, Fall Meeting 89(53):IN41A-1121.
  71. Lupton, J.E., and H. Craig. 1975. Excess 3He in oceanic basalts: Evidence for terrestrial primordial helium. Earth and Planetary Science Letters 26:133–139.
  72. McDonough, W.F. 1991. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Philosophical Transactions of the Royal Society of London A 335:407–418.
  73. McDougall, I., and R.A. Duncan. 1980. Linear volcanic chains: Recording plate motions? Tectonophysics 63:275–295.
  74. McKenzie, D., and R.K. O’Nions. 1983. Mantle reservoirs and ocean island basalts. Nature 301:229–231.
  75. McKenzie, D.P., and W.J. Morgan. 1969. Evolution of triple junctions. Nature 224(5215):125–133.
  76. McKenzie, D.P., and R.L. Parker. 1967. The North Pacific: An example of tectonics on a sphere. Nature 216(5122):1,276–1,280.
  77. McNutt, M.K. 1984. Lithospheric flexure and thermal anomalies. Journal of Geophysical Research 89:11,180–11,194.
  78. McNutt, M.K. 1998. Superswells. Reviews of Geophysics 36(2):211–244.
  79. Menzies, M.A., and C.J. Hawkesworth, eds. 1987. Mantle Metasomatism. Academic Press, London, 472 pp.
  80. Montelli, R., G. Nolet, F.A. Dahlen, and G. Masters. 2006. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems 7, Q11007, https://doi.org/10.1029/2006GC001248.
  81. Morgan, W.J. 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research 73(6):1,959–1,982.
  82. Morgan, W.J. 1971. Convection plumes in the lower mantle. Nature 230(5288):42–43.
  83. Morgan, W.J. 1972. Plate motions and deep mantle convection. Geological Society of America, Memoir 132 (Hess Volume), 7–22.
  84. Muller, R.D., J.Y. Royer, and L.A. Lawver. 1993. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21(3):275–278.
  85. Nataf, H.C. 2000. Seismic imaging of mantle plumes. Annual Review of Earth and Planetary Sciences 28:391–417.
  86. Natland, J., and E.L. Winterer. 2005. Fissure control on volcanic action in the Pacific. Pp. 687–710 in Plumes, Plates and Paradigms. G.R. Foulger, J. Natland, D. Presnall, and D.L. Anderson, eds, Geological Society of America, Boulder, CO.
  87. O’Connor, J.M., P. Stoffers, J.R. Wijbrans, and T.J. Worthington. 2007. Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: Evidence for a broad hotspot melting anomaly? Earth and Planetary Science Letters 263(3–4):339–354, https://doi.org/10.1016/ j.epsl.2007.09.007.
  88. Peate, D.W., C.J. Hawkesworth, M.M.S. Mantovani, N.W. Rogers, and S.P. Turner. 1999. Petrogenesis and stratigraphy of the high-Ti/Y Urubici magma type in the Parana Flood Basalt Province and implications for the nature of ‘Dupal’-type mantle in the South Atlantic Region. Journal of Petrology 40(3):451–473.
  89. Peirce, C., and P.J. Barton. 1991. Crustal structure of the Madeira-Tore Rise, eastern North Atlantic: Results of a DOBS wide-angle and normal incidence seismic experiment in the Josephine Seamount region. Geophysical Journal International 106(2):357–378.
  90. Phipps Morgan, J., and W.J. Morgan. 1999. Two-stage melting and the geochemical evolution of the mantle: A recipe for mantle plum-pudding. Earth and Planetary Science Letters 170(3):215–239.
  91. Pim, J., C. Peirce, A.B. Watts, I. Grevemeyer, and A. Krabbenhoeft. 2008. Crustal structure and origin of the Cape Verde Rise. Earth and Planetary Science Letters 272(1–2):422–428.
  92. Plank, T., and C.H. Langmuir. 1998. The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145:325–394.
  93. Putirka, K. 2008. Excess temperatures at ocean islands: Implications for mantle layering and convection. Geology 36(4):283–286.
  94. Regelous, M., A.W. Hofmann, W. Abouchami, and S.J.G Galer. 2003. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. Journal of Petrology 44(1):113–140.
  95. Ren, Z.Y., S. Ingle, E. Takahashi, N. Hirano, and T. Hirata. 2005. The chemical structure of the Hawaiian mantle plume. Nature 436(7052):837–840.
  96. Richards, M.A., R.A. Duncan, and V.E. Courtillot. 1989. Flood basalts and hot-spot tracks: Plume heads and tails. Science 246(4926):103–107.
  97. Sandwell, D., and Y. Fialko. 2004. Warping and cracking of the Pacific Plate by thermal contraction. Journal of Geophysical Research 109, B10411, https://doi.org/10.1029/2004JB003091.
  98. Sandwell, D.T., E.L. Winterer, J. Mammerickx, R.A. Duncan, M.A. Lynch, D.A. Levitt, and C.L. Johnson. 1995. Evidence for diffuse extension of the Pacific Plate from Pukapuka Ridges and cross-grain gravity lineations. Journal of Geophysical Research 100(B8):15,087–15,099.
  99. Schilling, J.-G. 1973a. Afar mantle plume: Rare earth evidence. Nature. Physical Science 242:2–6.
  100. Schilling, J.-G. 1973b. Iceland mantle plume: Geochemical evidence along Reykjanes ridge. Nature 242:565–571.
  101. Sharp, W.D., and D.A. Clague. 2006. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific Plate motion. Science 313(5791):1,281–1,284.
  102. Sheehan, A.F., and M.K. McNutt. 1989. Constraints on thermal and mechanical structure of the oceanic lithosphere at the Bermuda Rise from geoid height and depth anomalies. Earth and Planetary Science Letters 93(3–4):377–391.
  103. Sleep, N.H. 1990. Hotspots and mantle plumes: Some phenomenology. Journal of Geophysical Research 95:6,715–6,736.
  104. Staudigel, H., and D.A. Clague. 2010. The geological history of deep-sea volcanoes: Biosphere, hydrosphere, and lithosphere interactions. Oceanography 23(1):58–71.
  105. Staudigel, H., A.A.P. Koppers, T.A. Plank, and B.B. Hanan. 2010. Seamounts in the subduction factory. Oceanography 23(1):176–181.
  106. Staudigel, H., K.-H. Park, M. Pringle, J.L. Rubenstone, W.H.F. Smith, and A. Zindler. 1991. The longevity of the South Pacific isotope and thermal anomaly. Earth and Planetary Science Letters 102:24–44.
  107. Steinberger, B. 2000. Plumes in a convecting mantle: Models and observations for individual hotspots. Journal of Geophysical Research 105(B5):11,127–11,152.
  108. Steinberger, B., and M. Antretter. 2006. Conduit diameter and buoyant rising speed of mantle plumes: Implications for the motion of hot spots and shape of plume conduits. Geochemistry, Geophysics, Geosystems 7, Q11018, https://doi.org/10.1029/2006GC001409.
  109. Steinberger, B., and R.J. O’Connell. 1998. Advection of plumes in mantle flow: Implications for hotspot motion, mantle viscosity and plume distribution. Geophysical Journal International 132(2):412–434.
  110. Steinberger, B., R. Sutherland, and R.J. O’Connell. 2004. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430(6996):167–173.
  111. Stern, R.J. 2002. Subduction zones. Reviews of Geophysics 40, 1012, https://doi.org/10.1029/2001RG000108.
  112. Tarduno, J., H.-P. Bunge, N. Sleep, and U. Hansen. 2009. The bent Hawaiian-Emperor hotspot track: Inheriting the mantle wind. Science 324(5923):50–53, https://doi.org/10.1126/science.1161256.
  113. Tarduno, J.A., R.A. Duncan, D.W. Scholl, R.D. Cottrell, B. Steinberger, T. Thordarson, B.C. Kerr, C.R. Neal, F.A. Frey, M. Torii, and C. Carvallo. 2003. The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth’s mantle. Science 301(5636):1,064–1,069, https://doi.org/10.1126/science.1086442.
  114. Tollstrup, D.L., and J.B. Gill. 2005. Hafnium systematics of the Mariana arc: Evidence for sediment melt and residual phases. Geology 33(9):737–740.
  115. Van der Hilst, R.D., S. Widiyantoro, and R.L. Engdahl. 1997. Evidence for deep mantle circulation from global tomography. Nature 386:578–584.
  116. Van Keken, P. 1997. Evolution of starting mantle plumes: A comparison between numerical and laboratory models. Earth and Planetary Science Letters 148(1–2):1–11.
  117. Von Herzen, R.P., R.S. Detrick, S.T. Crough, D. Epp, and U. Fehn. 1982. Thermal origin of the Hawaiian swell: Heat-flow evidence and thermal models. Journal of Geophysical Research 87(B8):6,711-6,723.
  118. Wasserburg, G.J., and D.J. Depaolo. 1979. Models of Earth structure inferred from neodymium and strontium isotopic abundances. Proceedings of the National Academy of Sciences of the United States of America 76(8):3,594–3,598.
  119. Watts, A.B. 1976. Gravity and bathymetry in the Central Pacific Ocean. Journal of Geophysical Research 81:1,533–1,553.
  120. Watts, A.B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press, 458 pp.
  121. Watts, A.B., and U.S. ten Brink. 1989. Crustal structure, flexure and subsidence history of the Hawaiian Islands. Journal of Geophysical Research 94:10,743–10,500.
  122. Watts, A.B., and S. Zhong. 2000. Observations of flexure and the rheology of oceanic lithosphere. Geophysical Journal International 142:855–875.
  123. Watts, A.B., C. Peirce, J. Collier, R. Dalwood, J.P. Canales, and T.J. Henstock. 1997. A seismic study of lithospheric flexure in the vicinity of Tenerife, Canary Islands. Earth and Planetary Science Letters 146(3–4):431–447.
  124. Watts, A.B., D.T. Sandwell, W.H.F. Smith, and P. Wessel. 2006. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. Journal of Geophysical Research 111, B08408, https://doi.org/10.1029/2005JB004083.
  125. Watts, A.B., U.S. ten Brink, P. Buhl, and T. Brocher. 1985. A multichannel seismic study of lithospheric flexure across the Hawaiian-Emperor seamount chain. Nature 315:105–111.
  126. Watts, A.B., J.K. Weissel, R.A. Duncan, and R.L. Larson. 1988. Origin of the Louisville Ridge and its relationship to the Eltanin fracture zone system. Journal of Geophysical Research 93:3,051–3,077.
  127. Weigel, W., and I. Grevemeyer. 1999. The Great Meteor seamount: Seismic structure of a submerged intraplate volcano. Journal of Geodynamics 28(1):27–40.
  128. Wessel, P., and L.W. Kroenke. 2008. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research 113, B06101, https://doi.org/10.1029/2007JB005499.
  129. Wessel, P., D.T. Sandwell, and S.-S. Kim. 2010. The global seamount census. Oceanography 23(1):24–33.
  130. White, W.M., J.G. Schilling, and S.R. Hart. 1976. Evidence for the Azores mantle plume from strontium isotope geochemistry of the Central North-Atlantic. Nature 263(5579):659–663, https://doi.org/10.1038/263659a0.
  131. Wilson, J.T. 1963. A possible origin of the Hawaiian Islands. Canadian Journal of Physics 41:863–870.
  132. Wilson, J.T. 1965. A new class of faults and their bearing on continental drift. Nature 207(4995):343–347.
  133. Winterer, E.L., and D.T. Sandwell. 1987. Evidence from en-echelon cross-grain ridges for tensional cracks in the Pacific Plate. Nature 329(6139):534–537.
  134. Wolfe, C.J., S.C. Solomon, G. Laske, J.A. Collins, R.S. Detrick, J.A. Orcutt, D. Bercovici, and E.H. Hauri. 2009. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326(5958):1,388–1,390, https://doi.org/​10.1126/science.1180165.
  135. Ye, S., J.P. Canales, R. Rihm, J.J. Danobeitia, and J. Gallart. 1999. A crustal transect through the northern and northeastern part of the volcanic edifice of Gran Canaria, Canary Islands. Journal of Geodynamics 28(1):3–26.
  136. Zindler, A., and S. Hart. 1986. Chemical geodynamics. Annual Review Earth and Planetary Sciences 14:493–571.
  137. Zindler, A., E. Jagoutz, and S. Goldstein. 1982. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective. Nature 298:519–523.
  138. Zindler, A., H. Staudigel, and R. Batiza. 1984. Isotope and trace element geochemistry of young Pacific seamounts: Implications for the scale of upper mantle heterogeneity. Earth and Planetary Science Letters 70:175–195.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.