Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 03

View Issue TOC
Volume 22, No. 3
Pages 206 - 215

Integrating Biogeochemistry and Ecology Into Ocean Data Assimilation Systems

Pierre Brasseur Nicolas GruberRosa Barciela Keith BranderMaéva DoronAbdelali El Moussaoui Alister J. HobdayMartin HuretAnne-Sophie KremeurPatrick Lehodey Richard MatearCyril MoulinRaghu MurtuguddeInna Senina Einar Svendsen
Article Abstract

Monitoring and predicting the biogeochemical state of the ocean and marine ecosystems is an important application of operational oceanography that needs to be expanded. The accurate depiction of the ocean’s physical environment enabled by Global Ocean Data Assimilation Experiment (GODAE) systems, in both real-time and reanalysis modes, is already valuable for various applications, such as the fishing industry and fisheries management. However, most of these applications require accurate estimates of both physical and biogeochemical ocean conditions over a wide range of spatial and temporal scales. In this paper, we discuss recent developments that enable coupling new biogeochemical models and assimilation components with the existing GODAE systems, and we examine the potential of such systems in several areas of interest: phytoplankton biomass monitoring in the open ocean, ocean carbon cycle monitoring and assessment, marine ecosystem management at seasonal and longer time scales, and downscaling in coastal areas. A number of key requirements and research priorities are then identified for the future. GODAE systems will need to improve their representation of physical variables that are not yet considered essential, such as upper-ocean vertical fluxes that are critically important to biological activity. Further, the observing systems will need to be expanded in terms of in situ platforms (with intensified deployments of sensors for O2 and chlorophyll, and inclusion of new sensors for nutrients, zooplankton, micronekton biomass, and others), satellite missions (e.g., hyperspectral instruments for ocean color, lidar systems for mixed-layer depths, and wide-swath altimeters for coastal sea levels), and improved methods to assimilate these new measurements.

Citation

Brasseur, P., N. Gruber, R. Barciela, K. Brander, M. Doron, A. El Moussaoui, A.J. Hobday, M. Huret, A.-S. Kremeur, P. Lehodey, R. Matear, C. Moulin, R. Murtugudde, I. Senina, and E. Svendsen. 2009. Integrating biogeochemistry and ecology into ocean data assimilation systems. Oceanography 22(3):206–215, https://doi.org/10.5670/oceanog.2009.80.

References

Allen, J.I., and P.J. Somerfield. 2008. A multivariate approach to model skill assessment. Journal of Marine Systems doi:10.1016/j.jmarsys.2008.05.009.

Antoine, D., A. Morel, H.R. Gordon, V.F. Banzon, and R.H. Evans. 2005. Bridging ocean color observations of the 1980s and 2000s in search of long-term trends. Journal of Geophysical Research 110, C06009, doi:10.1029/2004JC002620.

Aumont, O., E. Maier-Reimer, S. Blain and P. Monfray. 2003. An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochemical Cycles 17:1060, doi:10.1029/2001GB001745.

Ballabrera-Poy, J., R.G. Murtugudde, J.R. Christian, and A.J. Busalacchi. 2003. Signal-to-noise ratios of observed monthly tropical ocean color. Geophysical Research Letters 30(12):1,645, doi:10.1029/2003GL016995.

Behrenfeld, M.J., R.T. O’Malley, D.A. Siegel, C.R. McClain, J.L. Sarmiento, G.C. Feldman, A.J. Milligan, P.G. Falkowski, R.M. Letelier, and E.S. Boss. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:752–755, doi:10.1038/nature05317.

Berline, L., J.M. Brankart, P. Brasseur, Y. Ourmières, and J. Verron. 2007. Improving the dynamics of a coupled physical-biogeochemical model of the North Atlantic basin through data assimilation: Impact on biological tracers. Journal of Marine Systems 64:1–4:153–172.

Bigelow, K.A., and M.N. Maunder. 2007. Does habitat or depth influence catch rates of pelagic species? Canadian Journal of Fisheries and Aquatic Sciences 64(11):1,581–1,594.

Bigelow, K.A., J. Hampton, and N. Miyabe. 2002. Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus). Fisheries Oceanography 11(3):143–155.

Bonhommeau, S., B. Blanke, A.M. Tréguier, N. Grima, E. Rivot, Y. Vermars, E. Greiner, and O. Le Pape. 2009. How fast can the European eel larvae cross the Atlantic Ocean? Fisheries Oceanography, doi:10.1111/j.1365-2419.2009.00517.x.

Brander, K. In press. Impacts of climate change on fisheries. Journal of Marine Systems, doi:10.1016/j.jmarsys.2008.12.015.

Chavez, F., J. Ryan, S.E. Lluch-Cota, and M. Niquen. 2003. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science 299:217–221, doi:10.1126/science.1075880.

Cole, J. 1999. Environmental conditions, satellite imagery, and clupeoid recruitment in the northern Benguela upwelling system. Fisheries Oceanography 8(1):25–38.

Gloor, M., N. Gruber, J.L. Sarmiento, C.L. Sabine, R.A. Feely, and C. Roedenbeck. 2003. A first estimate of present and pre-industrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophysical Research Letters 30(1), 1010, 10.1029/2002GL015594.

Gregg, W.W., N.W. Casey, and C.R. McClain. 2005. Recent trends in global ocean chlorophyll. Geophysical Research Letters 32, L03606, doi:10.1029/2004GL021808.

Griffin D., A. Hobday, and J. Wilkin. 2002. Fisheries applications. Pp. 119–121 in Proceedings of the International Symposium En route to GODAE, Biarritz, France, June 2002.

Gruber, N., M. Gloor, S.C. Doney, S.E. Mikaloff Fletcher, S. Dutkiewicz, M.J. Follows, M. Gerber, A.R. Jacobson, F. Joos, K. Lindsay, and others. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles 23, doi:10.1029/2008GB003349.

Gruber, N., H. Frenzel, S.C. Doney, P. Marchesiello, J.C. McWilliams, J.R. Moisan, J. Oram, G.K. Plattner, and K.D. Stolzenbach. 2006. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System. Deep-Sea Research I 53, doi:10.1016/j.dsr.2006.06.005.

Gruber, N., S.C. Doney, S.R. Emerson, D. Gilbert, T. Kobayashi, A. Körtzinger, G.C. Johnson, K.S. Johnson, S.C. Riser, and O. Ulloa. 2007. The Argo-Oxygen program: A white paper to promote the addition of oxygen sensors to the international Argo float program. Available online at: http://www-argo.ucsd.edu/o2_white_paper_web.pdf (accessed June 15, 2009).

Hemmings, J.C.P., R.M. Barciela, and M.J. Bell. 2008. Ocean color data assimilation with material conservation for improving model estimates of air-sea CO2 flux. Journal of Marine Research 66:87–126.

Herron, R.C., T.D. Leming, and J. Li. 1989. Satellite-detected fronts and butterfly fish aggregations in the northeastern Gulf of Mexico. Continental Shelf Research 9(6):569–589.

Hobday, A.J., and K. Hartmann. 2006. Near real-time spatial management based on habitat predictions for a longline bycatch species, Fisheries Management and Ecology 13:365–380.

Huret, M., J.A. Runge, C. Chen, G. Cowles, Q. Xu, and J.M. Pringle. 2007. Dispersal modeling of fish early life stages: Sensitivity with application to Atlantic cod in the western Gulf of Maine. Marine Ecology Progress Series 347:261–274.

Johns, T.C., C.F. Durman, H.T. Banks, M.J. Roberts, A.J. McLaren, J.K. Ridley, C.A. Senior, K.D. Williams, A. Jones, G.J. Rickard, and others. 2006. The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. Journal of Climate 19:1,327–1,353, doi: 10.1175/JCLI3712.1.

Johnson, D., H. Perry, and W. Graham. 2005. Using nowcast model currents to explore transport of non-indigenous jellyfish into the Gulf of Mexico. Marine Ecology Progress Series 305:139–146.

Johnson, K.S., W.M. Berelson, E.S. Boss, Z. Chase, H. Claustre, S.R. Emerson, N. Gruber, A. Körtzinger, M.J. Perry, and S.C. Riser. 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders: Prospects for a global array. Oceanography 22(3):216–225.

Lehodey, P., J. Alheit, M. Barange, T. Baumgartner, G. Beaugrand, K. Drinkwater, J.-M. Fromentin, S.R. Hare, G. Ottersen, R.I. Perry, and others. 2006. Climate variability, fish and fisheries. Journal of Climate 19(20):5,009–5,030.

Lehodey, P., I. Senina, and R. Murtugudde. 2008. A Spatial Ecosystem And Populations Dynamics Model (SEAPODYM): Modelling of tuna and tuna-like populations. Progress in Oceanography, doi:10.1016/j.pocean.2008.06.004.

Le Traon, P.Y., M. Rienecker, N. Smith, P. Bahurel, M. Bell, H. Hulbert, and P. Dandin. 1999. Operational Oceanography and Prediction: A GODAE Perspective. Proceedings of OCEANOBS 99 International Conference, Saint-Raphael, France, October 18–22, 1999.

Maury, O., B. Faugeras, Y.-J. Shina, J.-C. Poggialeb, T. Ben Aria, and F. Marsac. 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The model. Progress in Oceanography 74:479–499.

McKinley G., M.J. Follows, and J. Marshall. 2004. Mechanisms of air-sea CO2 flux variability in the Equatorial Pacific and North Atlantic. Global Biogeochemical Cycles 18, doi:10.1029/2003GB002179.

Mikaloff Fletcher, S.E., N. Gruber, A.R. Jacobson, S.C. Doney, S. Dutkiewicz, M. Gerber, M. Follows, F. Joos, K. Lindsay, D. Menemenlis, and others. 2006. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochemical Cycles 20, GB2002, doi:10.1029/2005GB002530.

Mikaloff Fletcher, S.E., N. Gruber, A.R. Jacobson, M. Gloor, S.C. Doney, S. Dutkiewicz, M. Gerber, M. Follows, F. Joos, K. Lindsay, and others. 2007. Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic transport. Global Biogeochemical Cycles 21, GB1010, doi:10.1029/2006GB002751.

Muller-Karger, F.E., R. Varela, R. Thunell, R. Luerssen, C. Hu, and J.J. Walsh. 2005. The importance of continental margins in the global carbon cycle. Geophysical Research Letters 32, L01602, doi:10.1029/2004GL021346.

Myers, R.A. 1998. When do environment-recruitment correlations work? Reviews in Fish Biology and Fisheries 8(3):285–305.

Oschlies, A., and V. Garçon. 1998. Eddy enhancement of primary production in a model of the North Atlantic Ocean. Nature 394:266–269.

Ourmières Y., J.M. Brankart, L. Berline, P. Brasseur, and J. Verron. 2006. Incremental Analysis Update implementation into a sequential ocean data assimilation system. Journal of Atmospheric and Oceanic Technology 23(12):1,729–1,744.

Ourmières Y., P. Brasseur, M. Lévy, J.-M. Brankart, and J. Verron. 2009. On the key role of nutrient data to constrain a coupled physical-biogeochemical assimilative model of the North Atlantic Ocean. Journal of Marine Systems 75:100–115, doi:10.1016/j.jmarsys.2008.08.003.

Polovina, J.J., E.A. Howell, and M. Abecassis. 2008. Ocean’s least productive waters are expanding. Geophysical Research Letters 35, L03618, doi:10.1029/2007GL031745.

Senina, I., J. Sibert, and P. Lehodey. 2008. Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: Application to skipjack tuna. Progress in Oceanography, doi:10.1016/j.pocean.2008.06.003.

Siddorn, J.R., J.I. Allen, J.C. Blackford, F.J. Gilbert, J.T. Holt, M.W. Holt, J.P. Osborne, R. Proctor, and D.K. Mills. 2007. Modelling the hydrodynamics and ecosystem of the North-West European continental shelf for operational oceanography. Journal of Marine Systems 65(1–4):417–429, doi10.1016/j.jmarsys.2006.01.018.

Svendsen, E., M. Skogen, P. Budgell, G. Huse, J.E. Stiansen, B. Ådlandsvik, F. Vikebø, L. Asplin, and S. Sundby. 2007. An ecosystem modeling approach to predicting cod recruitment. Deep Sea Research II 54:2,810–2,821.

Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, A. Watson, and others. 2009. Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research II 56:554–577.

Zagaglia, C.R., and J.L. Stech. 2004. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sensing Environment 93(1–2):267–281.