Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Since its founding, the Monterey Bay Aquarium Research Institute (MBARI) has pioneered unique capabilities for accessing the deep ocean and its inhabitants through focused peer relationships between scientists and engineers. This focus has enabled breakthroughs in our understanding of life in the sea, leading to fundamental advances in describing the biology and the ecology of open-ocean and deep-sea animals. David Packard’s founding principle was the application of technological advances to studying the deep ocean, in part because he recognized the critical importance of this habitat in a global context. Among other fields, MBARI’s science has benefited from applying novel methodologies in molecular biology and genetics, imaging systems, and in situ observations. These technologies have allowed MBARI’s bioluminescence and biodiversity laboratory and worldwide collaborators to address centuries-old questions related to the biodiversity, behavior, and bio-optical properties of organisms living in the water column, from the surface into the deep sea. Many of the most interesting of these phenomena are in the midwater domain—the vast region of ocean between the sunlit surface waters and the deep seafloor.

Citation

Haddock, S.H.D., L.M. Christianson, W.R. Francis, S. Martini, C.W. Dunn, P.R. Pugh, C.E. Mills, K.J. Osborn, B.A. Seibel, C.A. Choy, C.E. Schnitzler, G.I. Matsumoto, M. Messié, D.T. Schultz, J.R. Winnikoff, M.L. Powers, R. Gasca, W.E. Browne, S. Johnsen, K.L. Schlining, S. von Thun, B.E. Erwin, J.F. Ryan, and E.V. Thuesen. 2017. Insights into the biodiversity, behavior, and bioluminescence of deep-sea organisms using molecular and maritime technology. Oceanography 30(4):38–47, https://doi.org/10.5670/oceanog.2017.422.

References
    Bailey, T., M. Youngbluth, and G. Owen. 1995. Chemical composition and metabolic rates of gelatinous zooplankton from midwater and benthic boundary layer environments off Cape Hatteras, North Carolina, USA. Marine Ecology Progress Series 122:121–134, https://doi.org/10.3354/meps122121.
  1. Birk, M.A., C. Paight, and B.A. Seibel. 2016. Observations of multiple pelagic egg masses from small-sized jumbo squid (Dosidicus gigas) in the Gulf of California. Journal of Natural History 51:2,569–2,584, https://doi.org/10.1080/​00222933.2016.1209248
  2. Chun, C. 1880. Die Ctenophoren des Golfes von Neapel. Fauna und Flora des Golfes von Neapel.
  3. Choy, C.A., S.H.D. Haddock, and B.H. Robison. 2017. Deep pelagic food web structure as revealed by in situ feeding observations. Proceedings of the Royal Society B 284:20172116, https://doi.org/10.1098/rspb.2017.2116.
  4. Dunn, C.W., A. Hejnol, D.Q. Matus, K. Peng, W.E. Browne, S.A. Smith, E. Seaver, G.W. Rouse, M. Obst, G.D. Edgecombe, and others. 2008. Broad phylogenomic sampling improves resolution of the Animal Tree of Life. Nature 452:745–749, https://doi.org/​10.1038/nature06614.
  5. Dunn, C.W., P.R. Pugh, and S.H.D. Haddock. 2005a. Marrus claudanielis, a new species of deep-sea physonect siphonophore (Siphonophora, Physonectae). Bulletin of Marine Science 76:699–714.
  6. Dunn, C.W., P.R. Pugh, and S.H.D. Haddock. 2005b. Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization. Systematic Biology 54:916–935, https://doi.org/​10.1080/10635150500354837.
  7. Francis, W.R., M.L. Powers, and S.H.D. Haddock. 2014. Characterization of an anthraquinone fluor from the bioluminescent, pelagic polychaete Tomopteris. Luminescence 29:1,135–1,140, https://doi.org/10.1002/bio.2671.
  8. Francis, W.R., L.M. Christianson, and S.H.D. Haddock. 2017. Symplectin evolved from multiple duplications in bioluminescent squid. PeerJ 5:e3633, https://doi.org/10.7717/peerj.3633.
  9. Francis, W.R., L.M. Christianson, C.E. Schnitzler, M.L. Powers, and S.H.D. Haddock. 2016a. Non-excitable fluorescent protein orthologs found in ctenophores. BMC Evolutionary Biology 16:167, https://doi.org/10.1186/s12862-016-0738-5.
  10. Francis, W.R., M.L. Powers, and S.H.D. Haddock. 2016b. Bioluminescence spectra from three deep-sea polychaete worms. Marine Biology 163:255, https://doi.org/10.1007/s00227-016-3028-2.
  11. Francis, W.R., N.C. Shaner, L.M. Christianson, M.L. Powers, and S.H.D. Haddock. 2015. Occurrence of isopenicillin-N-synthase homologs in bioluminescent ctenophores and implications for coelenterazine biosynthesis. PLoS ONE 10(6):e0128742, https://doi.org/10.1371/journal.pone.0128742.
  12. Gasca, R., and S.H.D. Haddock. 2004. Associations between gelatinous zooplankton and hyperiid amphipods (Crustacea: Peracarida) in the Gulf of California. Pp. 529–535 in Coelenterate Biology 2003. Developments in Hydrobiology, vol. 178. D.G. Fautin, J.A. Westfall, P. Cartwrigh, M. Daly, and C.R. Wyttenbach, eds, Springer, Dordrecht, https://doi.org/​10.1007/​978-1-4020-2762-8_60.
  13. Gasca, R., and S.H.D. Haddock. 2016. The rare deep-living hyperiid amphipod Megalanceoloides remipes (Barnard, 1932): Complementary description and symbiosis. Zootaxa 4178(1):138–144, https://doi.org/10.11646/zootaxa.4178.1.7.
  14. Gasca, R., R. Hoover, and S.H.D. Haddock. 2015a. New symbiotic associations of hyperiid amphipods (Peracarida) with gelatinous zooplankton in deep waters off California. Journal of the Marine Biological Association of the United Kingdom 95:503–511, https://doi.org/10.1017/S0025315414001416.
  15. Gasca, R., E. Suárez-Morales, and S.H.D. Haddock. 2015b. Sapphirina irisDana, 1849 and S. sinuicauda-
    Brady, 1883 (Copepoda, Cyclopoida): predators of salps in Monterey Bay and the Gulf of California. Crustaceana 88:689–699, https://doi.org/​10.1163/​15685403-00003438.
  16. Haddock, S.H.D. 2004. A golden age of gelata: Past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530/531:549–566, https://doi.org/10.1007/s10750-004-2653-9.
  17. Haddock, S.H.D., and J.F. Case. 1994. A bioluminescent chaetognath. Nature 367:225–226, https://doi.org/​10.1038/367225a0.
  18. Haddock, S.H.D., and J.F. Case. 1999. Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: Ctenophores, medusae and siphonophores. Marine Biology 133:571–582, https://doi.org/​10.1007/s002270050497.
  19. Haddock, S.H.D., and C.W. Dunn. 2015. Fluorescent proteins function as a prey attractant: Experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biology Open 4:1,094–1,104, https://doi.org/10.1242/bio.012138.
  20. Haddock, S.H.D., C.W. Dunn, and P.R. Pugh. 2005a. A re-examination of siphonophore terminology and morphology, applied to the description of two new prayine species with remarkable bio-optical properties. Journal of the Marine Biological Association of the United Kingdom 85:695–707, https://doi.org/​10.1017/S0025315405011616.
  21. Haddock, S.H.D., C.W. Dunn, P.R. Pugh, and C. Schnitzler. 2005b. Bioluminescent and red-​fluorescent lures in a deep-sea siphonophore. Science 309:263, https://doi.org/10.1126/science.1110441.
  22. Haddock, S.H.D., and J.N. Heine. 2005. Scientific Blue-Water Diving. California Sea Grant, La Jolla, 49 pp., http://nsgd.gso.uri.edu/casg/casgh05001.pdf.
  23. Haddock, S.H.D., M.A. Moline, and J.F. Case. 2010. Bioluminescence in the sea. Annual Review of Marine Science 2:293–343, https://doi.org/10.1146/annurev-marine-120308-081028.
  24. Haddock, S.H.D., T. Rivers, and B. Robison. 2001. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proceedings of the National Academy of Sciences of the United States of America 98:11,148–11,151, https//doi.org/10.1073/pnas.201329798.
  25. Herring, P.J., E. Widder, and S.H.D. Haddock. 1992. Correlation of bioluminescence emissions with ventral photophores in the mesopelagic squid Abralia veranyi (Cephalopoda: Enoploteuthidae). Marine Biology 112:293–298, https://doi.org/10.1007/BF00702474.
  26. Hoving, H.J.T., and S.H.D. Haddock. 2017. The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna. Nature Scientific Reports 7:44952, https://doi.org/10.1038/srep44952.
  27. Hurt, C., S.H.D. Haddock, and W.E. Browne. 2013. Molecular phylogenetic evidence for the reorganization of the Hyperiid amphipods, a diverse group of pelagic crustaceans. Molecular Phylogenetics and Evolution 67:28–37, https://doi.org/10.1016/​j.ympev.2012.12.021.
  28. Johnsen, S., T.M. Frank, S.H.D. Haddock, E.A. Widder, and C.G. Messing. 2012. Light and vision in the deep-sea benthos: Part 1. Bioluminescence at 500–1000 m depth in the Bahamian Islands. Journal of Experimental Biology 215:3,335–3,343, https://doi.org/​10.1242/jeb.072009.
  29. Madin, L.P., W.M. Hamner, S.H.D. Haddock, and G.I. Matsumoto. 2013. Scuba diving in blue-​water. Pp. 71–82 in Research and Discovery: The Revolution of Science through Scuba. M.A. Lang, R.L. Marinelli, S.J. Roberts, and P.R. Taylor, eds, Smithsonian Contributions to the Marine Sciences, no. 39, Smithsonian Institution Scholarly Press, Washington, DC, https://doi.org/​10.5479/si.1943667X.39.
  30. Madin, L.P., and G.R. Harbison. 1978. Bathocyroe fosteri gen.nov., sp.nov.: A mesopelagic ctenophore observed and collected from a submersible. Journal of the Marine Biological Association of the United Kingdom 58:559–564, https://doi.org/​10.1017/S0025315400041217.
  31. Martini, S.M., and S.H.D. Haddock. 2017. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Nature Scientific Reports 7:45750, https://doi.org/10.1038/srep45750.
  32. Osborn, K.J. 2009. Relationships within the Munnopsidae (Crustacea, Isopoda, Asellota) based on three genes. Zoologica Scripta 38:617–635, https://doi.org/10.1111/j.1463-6409.2009.00394.x.
  33. Osborn, K.J., S.H.D. Haddock, F. Pleijel, L.P. Madin, and G.W. Rouse. 2009. Deep-sea, swimming worms with luminescent “bombs.” Science 325:964, https://doi.org/10.1126/science.1172488.
  34. Osborn, K.J., S.H.D. Haddock, and G.W. Rouse. 2011. Swima (Annelida, Acrocirridae), holopelagic worms from the deep Pacific. Zoological Journal of the Linnean Society 163:663–678, https://doi.org/​10.1111/j.1096-3642.2011.00727.x.
  35. Osborn, K.J., G.W. Rouse, S.K. Goffredi, and B.H. Robison. 2007. Description and relationships of Chaetopterus pugaporcinus, an unusual pelagic polychaete (Annelida, Chaetopteridae). The Biological Bulletin 212:40–54, https://doi.org/​10.2307/25066579.
  36. Podar, M., S.H.D. Haddock, M.L. Sogin, and G.R. Harbison. 2001. A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Molecular Phylogenetics and Evolution 21: 218–230, https://doi.org/10.1006/mpev.2001.1036.
  37. Powers, M.L., A.G. McDermott, N.C. Shaner, and S.H.D. Haddock. 2013. Expression and characterization of the calcium-activated photoprotein from the ctenophore Bathocyroe fosteri: Insights into light-sensitive photoproteins. Biochemical and Biophysical Research Communications 431:360–366, https://doi.org/​10.1016/j.bbrc.2012.12.026.
  38. Prasher, D., V. Eckenrode, W. Ward, F. Prendergast, and M. Cormier. 1992. Primary structure of the Aequorea victoria green fluorescent protein. Gene 111:229–233, https://doi.org/​10.1016/0378-1119(92)90691-H.
  39. Prasher, D., R. McCann, and M. Cormier. 1986. [26] Isolation and expression of a cDNA coding for aequorin, the Ca2+-activated photoprotein from Aequorea victoria. Methods in Enzymology 133:288–298, https://doi.org/​10.1016/0076-6879(86)33075-1.
  40. Pugh, P.R. 1992. The status of the genus Prayoides (Siphonophora:Prayidae). Journal of the Marine Biological Association of the United Kingdom 72:895–909, https://doi.org/10.1017/S0025315400060136.
  41. Pugh, P.R., and S.H.D. Haddock. 2010. Three new species of resomiid siphonophore (Siphonophora: Physonectae). Journal of the Marine Biological Association of the United Kingdom 90:1,119–1,143, https://doi.org/10.1017/S0025315409990543.
  42. Pugh, P.R., and S.H.D. Haddock. 2016. A description of two new species of the genus Erenna (Siphonophora: Physonectae: Erennidae), with notes on recently collected specimens of other Erenna species. Zootaxa 4189:401–446, https://doi.org/​10.11646/zootaxa.4189.3.1.
  43. Pugh, P.R., and G. Harbison. 1986. New observations of a rare physonect siphonophore, Lychnagalma utricularia (Claus, 1978). Journal of the Marine Biological Association of the United Kingdom 66:695–710, https://doi.org/10.1017/S0025315400042296.
  44. Robison, B.H., K.R. Reisenbichler, and R.E. Sherlock. 2017. The coevolution of midwater research and ROV technology at MBARI. Oceanography 30(4):26–37, https://doi.org/​10.5670/oceanog.2017.421.
  45. Ryan, J.F., K. Pang, C.E. Schnitzler, A.-D. Nguyen, R.T. Moreland, D.K. Simmons, B.J. Koch, W.R. Francis, P. Havlak, NISC Comparative Sequencing Program, and others. 2013. The genome of the ctenophore Mnemiopsis leidyi and its implications on cell type evolution. Science 342:1,336, https://doi.org/10.1126/science.1242592.
  46. Schlining, B.M., and N. Jacobsen Stout. 2006. MBARI’s Video Annotation and Reference System. In OCEANS 2006. IEEE conference, Boston, Massachusetts, September 18–21, 2006, https://doi.org/​10.1109/OCEANS.2006.306879.
  47. Seibel, B.A., B.H. Robison, and S.H.D. Haddock. 2005. Post-spawning egg care by a squid. Nature 438:929, https://doi.org/10.1038/438929a.
  48. Siebert, S., P.R. Pugh, S.H.D. Haddock, and C.W. Dunn. 2013. Re-evaluation of characters in Apolemiidae (Siphonophora), with description of two new species from Monterey Bay, California. Zootaxa 3702:201–232, https://doi.org/10.11646/zootaxa.3702.3.1.
  49. Shimomura, O. 1995. A short story of aequorin. The Biological Bulletin 189:1–5, https://doi.org/​10.2307/1542194.
  50. Staaf, D.J., S. Camarillo-Coop, S.H.D. Haddock, A.C. Nyack, J. Payne, C.A. Salinas-Zavala, B.A. Seibel, L. Trueblood, C. Widmer, and W.F. Gilly. 2008. Natural egg mass deposition by the Humboldt squid (Dosidicus gigas) in the Gulf of California and characteristics of hatchlings and paralarvae. Journal of the Marine Biological Association of the United Kingdom 88:759–770, https://doi.org/10.1017/S0025315408001422.
  51. Thuesen, E.V., F.E. Goetz, and S.H.D. Haddock. 2010. Bioluminescent organs of two deep-sea arrow worms, Eukrohnia fowleri and Caecosagitta macrocephala, with further observations on bioluminescence in chaetognaths. The Biological Bulletin 219:100–111, https://doi.org/10.1086/BBLv219n2p100.
  52. Thuesen, E.V., and S.H.D. Haddock. 2013. Archeterokrohnia docrickettsae (Chaetognatha: Phragmophora: Heterokrohniidae), a new species of deep-sea arrow worm from the Gulf of California. Zootaxa 3717:320–328, https://doi.org/10.11646/zootaxa.3717.3.2.
  53. Widder, E.A., C.H. Greene, and M.J. Youngbluth. 1992. Bioluminescence of sound-scattering layers in the Gulf of Maine. Journal of Plankton Research 14:1,607–1,624, https://doi.org/10.1093/plankt/14.11.1607.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.