Oceanography The Official Magazine of
The Oceanography Society
Volume 28 Issue 02

View Issue TOC
Volume 28, No. 2
Pages 108 - 121

OpenAccess

How Can Present and Future Satellite Missions Support Scientific Studies that Address Ocean Acidification?

By Joseph Salisbury , Douglas Vandemark , Bror Jönsson , William Balch , Sumit Chakraborty, Steven Lohrenz, Bertrand Chapron , Burke Hales, Antonio Mannino, Jeremy T. Mathis , Nicolas Reul , Sergio R. Signorini , Rik Wanninkhof , and Kimberly K. Yates 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Space-based observations offer unique capabilities for studying spatial and temporal dynamics of the upper ocean inorganic carbon cycle and, in turn, supporting research tied to ocean acidification (OA). Satellite sensors measuring sea surface temperature, color, salinity, wind, waves, currents, and sea level enable a fuller understanding of a range of physical, chemical, and biological phenomena that drive regional OA dynamics as well as the potentially varied impacts of carbon cycle change on a broad range of ecosystems. Here, we update and expand on previous work that addresses the benefits of space-based assets for OA and carbonate system studies. Carbonate chemistry and the key processes controlling surface ocean OA variability are reviewed. Synthesis of present satellite data streams and their utility in this arena are discussed, as are opportunities on the horizon for using new satellite sensors with increased spectral, temporal, and/or spatial resolution. We outline applications that include the ability to track the biochemically dynamic nature of water masses, to map coral reefs at higher resolution, to discern functional phytoplankton groups and their relationships to acid perturbations, and to track processes that contribute to acid variation near the land-ocean interface.

Citation

Salisbury, J., D. Vandemark, B. Jönsson, W. Balch, S. Chakraborty, S. Lohrenz, B. Chapron, B. Hales, A. Mannino, J.T. Mathis, N. Reul, S.R. Signorini, R. Wanninkhof, and K.K. Yates. 2015. How can present and future satellite missions support scientific studies that address ocean acidification? Oceanography 28(2):108–121, https://doi.org/10.5670/oceanog.2015.35.

References
    Alin, S.R., R.A. Feely, A.G. Dickson, J.M. Hernández-Ayón, L.W. Juranek, M.D. Ohman, and R. Goericke. 2012. Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011). Journal of Geophysical Research 117(C5), https://doi.org/10.1029/2011JC007511.
  1. Andréfouët, S., E.J. Hochberg, C. Chevillon, F.E. Muller-Karger, J.C. Brock, and C. Hu. 2005. Multi-scale remote sensing of coral reefs. Pp. 297–315 in Remote Sensing of Coastal Aquatic Environments: Technologies, Techniques, and Applications, vol. 7. R.L. Miller, C.E. Del Castillo, and B.A. Mckee, eds, Springer, https://doi.org/10.1007/978-1-4020-3100-7_13.
  2. Arrigo, K.R., S. Pabi, G.L. van Dijken, and W. Maslowski. 2010. Air-sea flux of CO2 in the Arctic Ocean, 1998–2003. Journal of Geophysical Research 115, G04024, https://doi.org/10.1029/2009JG001224.
  3. Bakker, D.C.E., B. Pfeil, K. Smith, S. Hankin, A. Olsen, S.R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, and others. 2014. An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth System Science Data 6:69–90, https://doi.org/10.5194/essd-6-69-2014.
  4. Balch, W.M., D. Drapeau, B. Bowler, and E. Booth. 2007. Prediction of pelagic calcification rates using satellite measurements. Deep Sea Research 54:478–495, https://doi.org/10.1016/j.dsr2.2006.12.006.
  5. Balch, W.M., D.T. Drapeau, B.C. Bowler, E. Lyczskowski, E.S. Booth, and D. Alley. 2011. The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Exchange Experiment: New evidence in support of the “Great Calcite Belt” hypothesis. Journal of Geophysical Research 116, C00F06, https://doi.org/10.1029/2011JC006941.
  6. Balch, W.M., H.R. Gordon, B.C. Bowler, D.T. Drapeau, and E.S. Booth. 2005. Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. Journal of Geophysical Research 110, C07001, https://doi.org/10.1029/2004JC002560.
  7. Balch, W.M., and P.E. Utgoff. 2009. Potential interactions among ocean acidification, coccolithophores, and the optical properties of seawater. Oceanography 22(4):146–159, https://doi.org/10.5670/oceanog.2009.104.
  8. Bednaršek, N., R.A. Feely, J.C.P. Reum, B. Peterson, J. Menkel, S.R. Alin, and B. Hales. 2014. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proceedings of the Royal Society B 281(1785), https://doi.org/10.1098/rspb.2014.0123.
  9. Behrenfeld, M.J., and P.G. Falkowski. 1997. A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography 42:1,479–1,491, https://doi.org/10.4319/lo.1997.42.7.1479.
  10. Benazzouz, A., S. Mordane, A. Orbi, M. Chagdali, K. Hilmi, A. Atillah, J.L. Pelegri, and D. Hervé. 2014. An improved coastal upwelling index from sea surface temperature using satellite-based approach: The case of the Canary Current upwelling system. Continental Shelf Research 81:38–54, https://doi.org/10.1016/j.csr.2014.03.012.
  11. Blackford, J.C. 2010. Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective. Journal of Marine Systems 81:12–18, https://doi.org/10.1016/j.jmarsys.2009.12.016.
  12. Breitburg, D.L., J. Salisbury, J.M. Bernhard, W.-J. Cai, S. Dupont, S.C. Doney, K.J. Kroeker, L.A. Levin, W.C. Long, L.M. Milke, and others. 2015. And on top of all that… Coping with ocean acidification in the midst of many stressors. Oceanography 28(2):48–61, https://doi.org/10.5670/oceanog.2015.31.
  13. Brito, A.C., I. Benyoucef, B. Jesus, V. Brotas, P. Gemez, C.R. Mendes, P. Launeau, M.P. Dias, and L. Barillé. 2013. Seasonality of microphytobenthos revealed by remote-sensing in a South European estuary. Continental Shelf Research 66:83–91, https://doi.org/10.1016/j.csr.2013.07.004.
  14. Buesseler, K.O. 1998. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles 12:297–310, https://doi.org/10.1029/97GB03366.
  15. Cai, W.-J., X. Hu, W.-J. Huang, L.-Q. Jiang, Y. Wang, T.-H. Peng, and X. Zhang. 2010. Alkalinity distribution in the western North Atlantic Ocean margins. Journal of Geophysical Research 115, C08014, https://doi.org/10.1029/2009JC005482.
  16. Cooley, S.R., H.L. Kite-Powell, and S.C. Doney. 2009 Ocean acidification’s potential to alter global marine ecosystem services. Oceanography 22(4):172–181, https://doi.org/10.5670/oceanog.2009.106.
  17. Corlett, G.K., C.J. Merchant, P.J. Minnett, and C.J. Donlon. 2014. Assessment of long-term satellite derived sea surface temperature records. Experimental Methods in the Physical Sciences 47:639–677, https://doi.org/10.1016/B978-0-12-417011-7.00021-0.
  18. Cross, J.N., J.T. Mathis, N.R. Bates, and R.H. Byrne. 2013. Conservative and non-conservative variations of total alkalinity on the southeastern Bering Sea shelf. Marine Chemistry 154:100–112, https://doi.org/10.1016/j.marchem.2013.05.012.
  19. Del Castillo, C.E., and R.L. Miller. 2008. On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume. Remote Sensing of the Environment 112:836–844, https://doi.org/10.1016/j.rse.2007.06.015.
  20. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–192, https://doi.org/10.1146/annurev.marine.010908.163834.
  21. Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, N. Knowlton, and others. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4:11–37, https://doi.org/10.1146/annurev-marine-041911-111611.
  22. Dutkiewicz, S., J.R. Scott, and M.J. Follows. 2013. Winners and losers: Ecological and biogeochemical changes in a warming ocean. Global Biogeochemical Cycles 27:463–477, https://doi.org/10.1002/gbc.20042.
  23. Eakin, C.M., J.A. Morgan, S.F. Heron, T.B. Smith, G. Liu, L. Alvarez-Filip, B. Baca, E. Bartels, C. Bastidas, C. Bouchon, and others. 2010. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5(11), https://doi.org/10.1371/journal.pone.0013969.
  24. Eichner, M., B. Rost, and S.A. Kranz. 2014. Diversity of ocean acidification effects on marine N2 fixers. Journal of Experimental Marine Biology and Ecology 457:199–207, https://doi.org/10.1016/j.jembe.2014.04.015.
  25. Emery, W.J., D.J. Baldwin, P. Schlüssel, and R.W. Reynolds. 2001. Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements. Journal Of Geophysical Research 106(C2):2,387–2,405, https://doi.org/10.1029/2000JC000246.
  26. Feely, R.A., C.L. Sabine, R.H. Byrne, F.J. Millero, A.G. Dickson, R. Wanninkhof, A. Murata, L.A. Miller, and D. Greeley. 2012. Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Global Biogeochemical Cycles 26, GB3001, https://doi.org/10.1029/2011GB004157.
  27. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1,490–1,492, https://doi.org/10.1126/science.1155676.
  28. Friis, K., A. Kortzinger, and D.W.R. Wallace. 2003. The salinity normalization of marine inorganic carbon chemistry data. Geophysical Research Letters 30, 1085, https://doi.org/10.1029/2002GL015898.
  29. Gattuso, J.-P., and L. Hansson. 2011. Ocean Acidification. Oxford University Press, Oxford and New York, 408 pp.
  30. Gierach, M.M., J. Vasquez-Cuervo, T. Lee, and V.M. Tsontos. 2013. Aquarius and SMOS detect effects of an extreme Mississippi River flooding event in the Gulf of Mexico. Geophysical Research Letters 40:5,188–5,193, https://doi.org/10.1002/grl.50995.
  31. Gledhill, D., R. Wanninkhof, and M. Eakin. 2009. Observing ocean acidification from space. Oceanography 22(4):48–59, https://doi.org/10.5670/oceanog.2009.96.
  32. Gregg, W.W., and N.W. Casey. 2004. Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sensing of Environment 93:463–479, https://doi.org/10.1016/j.rse.2003.12.012.
  33. Hales, B., L. Karp-Boss, A. Perlin, and P.A. Wheeler. 2006. Oxygen production and carbon sequestration in an upwelling coastal margin. Global Biogeochemical Cycles GB001, https://doi.org/10.1029/2005GB002517.
  34. Hales, B., P.G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez. 2012. Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific. Progress in Oceanography 103:1–15, https://doi.org/10.1016/j.pocean.2012.03.001.
  35. Hardman-Mountford, N.J., G. Moore, D.C.E. Bakker, A.J. Watson, U. Schuster, R. Barciela, A. Hines, G. Monofoiffé, J. Brown, S. Dye, and others. 2008. An operational monitoring system to provide indicators of CO2-related variables in the ocean. ICES Journal of Marine Science 65:1,498–1,503, https://doi.org/10.1093/icesjms/fsn110.
  36. Hirpa, F.A., M. Gebremichael, T.M. Hopson, R. Wojick, and H. Lee. 2014. Assimilation of satellite soil moisture retrievals into a hydrologic model for improving river discharge. Pp. 319–329 in Remote Sensing of the Terrestrial Water Cycle. V. Lakshmi, D. Alsdorf, M. Anderson, S. Biancamaria, M. Cosh, J. Entin, G. Huffman, W. Kustas, P. van Oevelen, T. Painter, J. Parajka, M. Rodell, and C. Rüdiger, eds, John Wiley & Sons, Inc, Hoboken, NJ.
  37. Hormazabal, S., G. Shaffer, J. Letelier, and O. Ulloa. 2001. Local and remote forcing of sea surface temperature in the coastal upwelling system off Chile. Journal of Geophysical Research 106(C8):16,657–16,671, https://doi.org/10.1029/2001JC900008.
  38. Hutchins, D.A., F.X. Fu, E.A. Webb, N. Walworth, and A. Tagliabue. 2013. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nature Geoscience 6:790–795, https://doi.org/10.1038/ngeo1858.
  39. IOCCG (International Ocean-Colour Coordinating Group). 2014. Phytoplankton Functional Types from Space. S. Sathyendranath, ed., Reports of the International Ocean-Colour Coordinating Group No. 15, IOCCG, Dartmouth, Canada, 163 pp., http://www.ioccg.org/reports/IOCCG_Report_15_2014.pdf.
  40. IPCC (Intergovernmental Panel on Climate Change). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1,535 pp.
  41. Jönsson, B.F., J.E. Salisbury, and A. Mahadevan. 2011. Large variability in continental shelf production of phytoplankton carbon revealed by satellite. Biogeosciences 8:1,213–1,223, https://doi.org/10.5194/bg-8-1213-2011.
  42. Juranek, L.W., R.A. Feely, D. Gilbert, H. Freeland, and L.A. Miller. 2011. Real-time estimation of pH and aragonite saturation state from Argo profiling floats: Prospects for an autonomous carbon observing strategy. Geophysical Research Letters 38(17), https://doi.org/10.1029/2011GL048580.
  43. Key, R.M., A. Kozyr, C. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F. Millero, C. Mordy, and T. Peng. 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18, GB4031, https://doi.org/10.1029/2004GB002247.
  44. Kleypas, J.A., and K.K. Yates. 2009. Coral reefs and ocean acidification. Oceanography 22(4):108–117, https://doi.org/10.5670/oceanog.2009.101.
  45. Kobryn, H.T., K. Wouters, L.E. Beckley, and T. Heege. 2013. Ningaloo Reef: Shallow marine habitats mapped using a hyperspectral sensor. PLoS ONE 8(7), https://doi.org/10.1371/journal.pone.0070105.
  46. Lagerloef, G., S. Yueh, and J. Piepmeiner. 2013. NASA’s Aquarius Mission provides new ocean view. Sea Technology January 2013, http://www.sea-technology.com/features/2013/0113/NASA.php.
  47. Land, P.E., J.D. Shutler, H.S. Findlay, F. Girard-Ardhuin, R. Sabia, N. Reul, J.-F. Piolle, B. Chapron, Y. Quilfen, J.E. Salisbury, and others. 2015. Salinity from space unlocks satellite-based assessment of ocean acidification. Environmental Science & Technology 49:1,987–1,994, https://doi.org/10.1021/es504849s.
  48. Lee, Z., M. Jiang, C. Davis, N. Pahlevan, Y.-H. Ahn, and R. Ma. 2012. Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics. Ocean Science Journal 47:323–329, https://doi.org/10.1007/s12601-012-0031-5.
  49. Lee, H.J, J.Y. Park, S.H. Lee, J.M. Lee, and T.K. Kim. 2013. Suspended sediment transport in a rock-bound, macrotidal estuary: Han Estuary, eastern Yellow Sea. Journal of Coastal Research 29:358–371, https://doi.org/10.2112/JCOASTRES-D-12-00066.1.
  50. Lee, K., T. Tong, F.J. Millero, C.L. Sabine, A.G. Dickson, C. Goyet, G.-H. Park, R. Wanninkhof, R.A. Feely, and R.M. Key. 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters 33, L19605, https://doi.org/10.1029/2006GL027207.
  51. Lefèvre, N., J. Aiken, J. Rutllant, G. Daneri, S. Lavender, and T. Smyth. 2002. Observations of pCO2 in the coastal upwelling off Chile: Spatial and temporal extrapolation using satellite data. Journal of Geophysical Research 107(C6), https://doi.org/10.1029/2000JC000395.
  52. Lefèvre, N., A.J. Watson, and A.R. Watson. 2005. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data. Tellus Series B 57:375–384, https://doi.org/10.1111/j.1600-0889.2005.00164.x.
  53. Le Quéré, C., R. Moriarty, R.M. Andrew, G.P. Peters, P. Ciais, P. Friedlingstein, S.D. Jones, S. Sitch, P. Tans, A. Arneth, and others. 2014. Global carbon budget 2014. Earth System Science Data Discussions 7:521–610, https://doi.org/10.5194/essdd-7-521-2014.
  54. Le Vine, D.M., E.P. Dinnat, G.S.E. Lagerloef, P. de Matthaeis, S. Abraham, C. Utku, and H. Kao. 2014. Aquarius: Status and recent results. Radio Science 49:709–720, https://doi.org/10.1002/2014RS005505.
  55. Liu, C., R. Miller, K.L. Carder, Z.P. Lee, E. D’Sa, and J. Ivey. 2006. Estimating the underwater light field from remote sensing of ocean color. Journal of Oceanography 62:235–248, https://doi.org/10.1007/s10872-006-0048-4.
  56. Lohrenz, S.E., and W.-J. Cai. 2006. Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin. Geophysical Research Letters 33, L01601, https://doi.org/10.1029/2005GL023942.
  57. Loukos, H., F. Vivier, P.P. Murphy, D.E. Harrison, and C. Le Quéré. 2000. Interannual variability of equatorial Pacific CO2 fluxes estimated from temperature and salinity data. Geophysical Research Letters 27:1,735–1,738, https://doi.org/10.1029/1999GL011013.
  58. Martz, T.R., K.L. Daly, R.H. Byrne, J.H. Stillman, and D. Turk. 2015. Technology for ocean acidification research: Needs and availability. Oceanography 28(2):40–47, https://doi.org/10.5670/oceanog.2015.30.
  59. Mathis, J.T., J.N. Cross, N. Monacci, R.A. Feely, and P. Stabeno. 2014. Evidence of prolonged aragonite undersaturations in the bottom waters of the southern Bering Sea shelf from autonomous sensors. Deep Sea Research Part II 109:125–133, https://doi.org/10.1016/j.dsr2.2013.07.019.
  60. Moisander, P.H., R.A. Beinart, I. Hewson, A.E. White, K.S. Johnson, C.A. Carlson, J.P. Montoya, and J.P. Zehr. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1,512–1,514, https://doi.org/10.1126/science.1185468.
  61. Molleri, G.S.F., E.M.L. de M. Novo, and M. Kampel. 2010. Space-time variability of the Amazon River plume based on satellite ocean color. Continental Shelf Research 30:342–352, https://doi.org/10.1016/j.csr.2009.11.015.
  62. Mumby, P.J., J. Chisholm, A.J. Edwards, C.D. Clark, E.B. Roark, S. Andréfouët, and J. Jaubert. 2001. Unprecedented bleaching-induced mortality in Porites spp. at Rangiroa Atoll, French Polynesia. Marine Biology 139:183–189, https://doi.org/10.1007/s002270100575.
  63. Nair, A., S. Sathyendranath, T. Platt, J. Morales, V. Stuart, M-H. Forget, E. Devred, and H. Bouman. 2008. Remote sensing of phytoplankton functional types. Remote Sensing of the Environment 112:3,366–3,375, https://doi.org/10.1016/j.rse.2008.01.021.
  64. Nakano, Y., and Y.W. Watanabe. 2005. Reconstruction of pH in the surface seawater over the North Pacific basin for all seasons using temperature and chlorophyll-a. Journal of Oceanography 61:673–680, https://doi.org/10.1007/s10872-005-0075-6.
  65. NRC (National Research Council). 2007. Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future. National Academies Press, Washington, DC, 456 pp.
  66. Phinn, S., C. Roelfsema, A. Dekker, V. Brando, and J. Anstee. 2008. Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia), Remote Sensing of the Environment 112:3,413–3,425, https://doi.org/10.1016/j.rse.2007.09.017.
  67. Reul, N., S. Fournier, J. Boutin, O. Hernandez, C. Maes, B. Chapron, G. Alory, Y. Quilfen, J. Tenerelli, and S. Morisset. 2013. Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle. Surveys in Geophysics 35:681–722, https://doi.org/10.1007/s10712-013-9244-0.
  68. Reynolds, R.W., C.L. Gentemann, and G.K. Corlett. 2010. Evaluation of AATSR and TMI Satellite SST Data. Journal of Climate 23:152–165, https://doi.org/10.1175/2009JCLI3252.1.
  69. Riebesell, U., and P.D. Tortell. 2011. Effects of ocean acidification on pelagic organisms and ecosystems. Pp. 99–121 in Ocean Acidification. J.-P. Gattuso and L. Hansson, eds, Oxford University Press, Oxford.
  70. Rödenbeck, C., R.F. Keeling, D.C.E. Bakker, N. Metzl, A. Olsen, C. Sabine, and M. Heimann. 2013. Global surface-ocean pCO2 and sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Ocean Science 9:193–216, https://doi.org/10.5194/os-9-193-2013.
  71. Rost, B., U. Riebesell, A. Burkhardt, and D. Sultemeyer. 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography 48:55–67, https://doi.org/10.4319/lo.2003.48.1.0055.
  72. Sabine, C.L., and T. Tanhua. 2010. Estimation of anthropogenic CO2 inventories in the ocean. Annual Review of Marine Science 2:175–198, https://doi.org/10.1146/annurev-marine-120308-080947.
  73. Salisbury, J.E., M. Green, C. Hunt, and J.W. Campbell. 2008. Coastal acidification by rivers: A threat to shellfish? Eos, Transactions American Geophysical Union 89:513, https://doi.org/10.1029/2008EO500001.
  74. Salisbury, J.E., D. Vandemark, J. Campbell, C. Hunt, D. Wisser, N. Reul, and B. Chapron. 2011. Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters. Journal Of Geophysical Research 116, C00H02, https://doi.org/10.1029/2011JC006989.
  75. Sarmiento, J.L., and N. Gruber. 2006. Ocean Biogeochemical Dynamics. Princeton University Press, Princeton, NJ, 528 pp.
  76. Sathyendranath, S., L. Watts, E. Devred, T. Platt, C. Caverhill, and H. Maass. 2004. Discrimination of diatoms from other phytoplankton using ocean-colour data. Marine Ecology Progress Series 272:59–68, https://doi.org/10.3354/meps272059.
  77. Signorini, S., R.A. Mannino, R.G. Najjar, M.A.M. Friedrichs, W.-J. Cai, J. Salisbury, Z.A. Wang, H. Thomas, and E. Shadwick. 2013. Surface ocean pCO2 seasonality and sea-air CO2 flux estimates for the North American east coast. Journal of Geophysical Research 118:5,439-5,460, https://doi.org/10.1002/jgrc.20369.
  78. Shutler, J.D., P.E. Land, C.W. Brown, H.S. Findlay, C.J. Donlon, M. Medland, R. Snooke, and J.C. Blackford. 2013. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data. Biogeosciences 10:2,699–2,709, https://doi.org/10.5194/bg-10-2699-2013.
  79. Takahashi, T., S.C. Sutherland, D.W. Chipman, J.G. Goddard, C. Ho, T. Newberger, C. Sweeney, and D.R. Munro. 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry 164:95–125, https://doi.org/10.1016/j.marchem.2014.06.004.
  80. Tatters, A.O., M.Y. Roleda, A. Schnetzer, F. Fu, C.L. Hurd, P.W. Boyd, D.A. Caron, A.A.Y. Lie, L.J. Hoffmann, and D.A. Hutchins. 2013. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society B, https://doi.org/10.1098/rstb.2012.0437.
  81. Telszewski, M., A. Chazottes, U. Schuster, A.J. Watson, C. Moulin, D.C.E. Bakker, M. González-Dávila, T. Johannessen, A. Körtzinger, H. Lüger, and others. 2009. Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Biogeosciences 6:1,405–1,421, https://doi.org/10.5194/bg-6-1405-2009.
  82. Vahtmäe, E., T. Kutser, G. Martin, and J. Kotta. 2006. Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters: A Baltic Sea case study. Remote Sensing of Environment 101:342–351, https://doi.org/10.1016/j.rse.2006.01.009.
  83. Velo, A., F.F. Pérez, T. Tanhua, M. Gilcoto, A.F. Rios, and R.M. Key. 2013. Total alkalinity estimation using MLR and neural network techniques. Journal of Marine Systems 111–122:11–18, https://doi.org/10.1016/j.jmarsys.2012.09.002.
  84. Waldbusser, G.G., and J.E. Salisbury, 2014. Ocean acidification in the coastal zone from an organism’s perspective: Multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6:221–247, https://doi.org/10.1146/annurev-marine-121211-172238.
  85. Wanninkhof, R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods 12(6):351–362, https://doi.org/10.4319/lom.2014.12.351.
  86. Westberry, T.K., D.A. Siegel, and A. Subramaniam. 2005. An improved bio-optical model for the remote sensing of Trichodesmium spp. blooms. Journal of Geophysical Research 110, C06012, https://doi.org/10.1029/2004JC002517.
  87. Westberry, T.K., P.J.L.B. Williams, and M.J. Behrenfeld. 2012. Global net community production and the putative net heterotrophy of the oligotrophic oceans. Global Biogeochemical Cycles 26, GB4019, https://doi.org/10.1029/2011GB004094.
  88. Xu, D., Y. Wang, X. Fan, D. Wang, N. Ye, X. Zhang, S. Mou, Z. Guan, and Z. Zhuang. 2014. Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L. Environmental Science & Technology 48:7,738–7,746, https://doi.org/10.1021/es404866z.
  89. Zeebe, R.E., and D. Wolf-Gladrow. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, 65, 360 pp.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.