Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 03

View Issue TOC
Volume 25, No. 3
Pages 166 - 183

OpenAccess

Glacial Intensification During the Neogene: A Review of Seismic Stratigraphic Evidence from the Ross Sea, Antarctica, Continental Shelf

By Philip J. Bart  and Laura De Santis 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Seismic stratigraphic and drill data from Antarctic continental margins have provided much direct evidence concerning ice sheet evolution as Earth’s climate cooled from the warmth of the Eocene. Seismic facies analyses and correlations to sediment cores from Deep Sea Drilling Project Leg 28 drill sites show that the Ross Sea, the southwestern Pacific gateway of West Antarctica, was still mostly free of grounded ice for ~ 6 million years after Oi-1, the large-amplitude oxygen-isotope shift that signaled the abrupt onset of the current Antarctic glaciation. In the Ross Sea, our analysis shows that West Antarctic glaciation had begun by the late Oligocene, much earlier than usually interpreted from the paleoceanographic proxy data. Continental ice probably existed on Marie Bird Land and other highland areas of the West Antarctica. In the central Ross Sea, ice caps nucleated on the subaerially elevated basement horst blocks of the Central and Coulman Highs. Ice caps waxed and waned across the shallow-marine platforms rimming these broad basement uplifts. These temperate glacial systems delivered much sediment to the surrounding deepwater shelf basins. Ice cap oscillations during the early and middle Miocene also included significant intervals of grounded ice retreat and resumption of widespread marine sedimentation. By the end of the middle Miocene, glaciation intensified, local ice caps coalesced, and grounded ice with cross-shelf ice streams eventually extended across the entire Ross Sea continental shelf. Antarctic climate shifted from polar to temperate conditions during this time and ice streams advanced to the shelf edge. Full-bodied West Antarctic Ice Sheet advances continued and even occurred during the warmer-than-present early Pliocene. As a consequence of widespread and progressive glacial erosion, the shelf overdeepened in the latest Miocene. The surprisingly few advances of grounded ice preserved in Plio-Pleistocene strata suggest that the record is amalgamated and/or otherwise below the resolution of seismic data.

Citation

Bart, P.J., and L. De Santis. 2012. Glacial intensification during the Neogene: A review of seismic stratigraphic evidence from the Ross Sea, Antarctica, continental shelf. Oceanography 25(3):166–183, https://doi.org/10.5670/oceanog.2012.92.

References
    Alley, R.B., D.D. Blankenship, S.T. Rooney, and C.R. Bentley. 1989. Sedimentation beneath ice shelves: The view from Ice Stream B. Marine Geology 85:101–120, https://doi.org/10.1016/0025-3227(89)90150-3.
  1. Alonso, B., J.B. Anderson, J.I. Diaz, and L.R. Bartek. 1992. Pliocene–Pleistocene seismic stratigraphy of the Ross Sea: Evidence for multiple ice sheet grounding episodes. Pp. 93–103 in Contribution to Antarctic Research III. Antarctic Research Series, vol. 57, D.H. Elliot, ed., American Geophysical Union, Washington, DC, https://doi.org/10.1029/AR057p0093.
  2. Anandakrishnan, S., G.A. Catania, R.B. Alley, and H.J. Horgan. 2007. Discovery of till deposition at the grounding line of Whillans Ice Stream. Science 315:1,835–1,838, https://doi.org/10.1126/science.1138393.
  3. Anderson, J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge, UK, 289 pp.
  4. Anderson, J., and L.R. Bartek 1992. Cenozoic glacial history of the Ross Sea revealed by intermediate resolution seismic reflection data combined with drill site information. Pp. 213–263 in The Antarctic Paleoenvironment: A Perspective on Global Change. J.P. Kennett and D.A. Warnke, eds, Antarctic Research Series, vol. 56, American Geophysical Union, Washington DC, https://doi.org/10.1029/AR056p0231.
  5. ANTOSTRAT Project. 1995. Seismic stratigraphic atlas of the Ross Sea. CD-ROM accompanying Geology and Seismic Stratigraphy of the Antarctic Margin. A.K. Cooper, P.F. Barker, and G.
  6. Brancolini, eds, Antarctic Research Series, vol. 68, American Geophysical Union, Washington DC (22 plates).
  7. Barker, P., and A. Camerlenghi. 2002. Glacial history of the Antarctic Peninsula from Pacific margin sediments. Pp. 1–40 in Proceedings of the Ocean Drilling Program, Scientific Results, vol. 178. P.F. Barker, A. Camerlenghi, G.D. Acton, and A.T.S. Ramsay, eds, Ocean Drilling Program, College Station, TX, https://doi.org/10.2973/odp.proc.sr.178.238.2002.
  8. Barrett, P.J., ed. 1989. Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound. New Zealand DSIR Bulletin, vol. 254, Wellington, New Zealand, 251 pp.
  9. Barrett, P.J. 2008. A history of Antarctic Cenozoic glaciation: View from the continent. Pp. 33–83 in Antarctic Climate Evolution, vol. 8. F. Florindo and M. Siegert, eds, Elsevier, Amsterdam.
  10. Barrett, P.J., M.J. Hambrey, and P.H. Robinson. 1991. Cenozoic glacial and tectonic history from CIROS-1, McMurdo Sound. Pp. 651–656 in Geological Evolution of Antarctica. M.R.A. Thomson, A. Crame, and J.W. Thomson, eds, Cambridge University Press, New York.
  11. Barron, J., B. Larsen, and J.G. Baldauf. 1989. Evidence for late Eocene to early Oligocene Antarctic glaciation and observations on late Neogene glacial history of Antarctica: Results from Leg 119. Pp. 869–891 in Proceedings of the Ocean Drilling Program: Scientific Results, vol. 119, https://doi.org/10.2973/odp.proc.sr.119.194.1991.
  12. Bart, P.J. 2001. Did the Antarctic ice sheets expand during the early Pliocene? Geology 29:67–70, https://doi.org/10.1130/0091-7613(2001)029<0067:DTAISE>2.0.CO;2.
  13. Bart, P.J. 2003. Were West Antarctic Ice Sheet grounding events in Ross Sea a consequence of East Antarctic Ice Sheet expansion during the middle Miocene? Earth and Planetary Science Letters 216:93–107, https://doi.org/10.1016/S0012-821X(03)00509-0.
  14. Bart, P.J. 2004. West-directed flow of the West Antarctic Ice Sheet across Eastern Basin, Ross Sea during the Quaternary. Earth and Planetary Science Letters 228:425–438, https://doi.org/10.1016/j.epsl.2004.10.014.
  15. Bart, P.J., and J. Anderson. 1995. Seismic record of glacial events affecting the Pacific margin of the northwestern Antarctic Peninsula. Pp. 75–96 in Geology and Seismic Stratigraphy of the Antarctic Margin. A.K. Cooper, P.F. Barker, and G. Brancolini, eds, Antarctic Research Series, vol. 68, American Geophysical Union, Washington, DC.
  16. Bart, P.J., and J. Anderson. 1996. Seismic expression of depositional sequences associated with expansion and contraction of ice sheets on the northwestern Antarctic Peninsula continental shelf. Pp. 171–186 in Geology of Siliciclastic Shelf Seas. Geological Society Special Publications, vol. 117, M. De Batist and P. Jacobs, eds, The Geological Society of London.
  17. Bart, P.J., J.B., Anderson, F. Trincardi, and S.S. Shipp. 2000. Seismic data from the Northern Basin, Ross Sea, record extreme expansions of the East Antarctic Ice Sheet during the late Neogene. Marine Geology 166:31–50, https://doi.org/10.1016/S0025-3227(00)00006-2.
  18. Bart, P.J., M. DeBatist, and W. Jokat. 1999. Interglacial collapse of Crary Trough Mouth Fan, Weddell Sea, Antarctica: Implications for Antarctic glacial history. Journal of Sedimentary Research 69:1,276–1,289.
  19. Bart, P.J., D.E. Egan, and S.A. Warny. 2005. Direct constraints on Antarctic Peninsula ice sheet grounding events between 5.12 and 7.94 Ma. Journal of Geophysical Research 110, F04008, https://doi.org/10.1029/2004JF000254.
  20. Bart, P.J., and M. Iwai. 2012. The Overdeepening Hypothesis: How erosional modification of the marine-scape during the early Pliocene altered glacial dynamics on the Antarctic Peninsula’s Pacific margin. Palaeogeography, Palaeoclimatology, Palaeoecology 335:42–51, https://doi.org/10.1016/j.palaeo.2011.06.010.
  21. Bartek, L., P. Vail, J.B. Anderson, P. Emmet, and S. Wu. 1991. Effect of Cenozoic ice-sheet fluctuations in Antarctica on the stratigraphic signature of the Neogene. Journal of Geophysical Research 96:6,753–6,778, https://doi.org/10.1029/90JB02528.
  22. Böhm, G., N. Ocakoğlu, S. Picotti, and L. De Santis. 2009. West Antarctic Ice Sheet evolution: New insights from a seismic tomographic 3D depth model in the Eastern Ross Sea (Antarctica). Marine Geology 266:109–128, https://doi.org/10.1016/j.margeo.2009.07.016.
  23. Brancolini, G., M. Busetti, A. Marchetti, L. De Santis, C. Zanolla, A.K. Cooper, G.R. Cochrane, I. Zayatz, V. Belyaev, M. Knyazev, and others. 1995a. Descriptive text for the Seismic Stratigraphic Atlas of the Ross Sea, Antarctica. Pp. A271–A286 in Geology and Seismic Stratigraphy of the Antarctic Margin. A.K. Cooper, P.F. Barker, and G. Brancolini, eds, Antarctic Research Series, vol. 68, American Geophysical Union, Washington, DC.
  24. Brancolini, G., A.K. Cooper, and F. Coren. 1995b. Seismic facies and glacial history in the Western Ross Sea Antarctica. Pp. 209–233 in Geology and Seismic Stratigraphy of the Antarctic Margin. A.K. Cooper, P.F. Barker, and G. Brancolini, eds, Antarctic Research Series, vol. 68, American Geophysical Union, Washington, DC.
  25. Busetti, M., G. Spadini, F.M. Van der Wateren, S.A.P.L. Cloetingh, and C. Zanolla. 1999. Kinematic modelling of the West Antarctic Rift System, Ross Sea, Antarctica. Global and Planetary Change 23:79–103, https://doi.org/10.1016/S0921-8181(99)00052-1.
  26. Chow, J., and P.J. Bart. 2003. West Antarctic Ice Sheet grounding events on the Ross Sea outer continental shelf during the middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 198:169–186, https://doi.org/10.1016/S0031-0182(03)00400-0.
  27. Clapperton, C.M., and D.E. Sugden. 1990. Late Cenozoic glacial history of the Ross embayment, Antarctica. Quaternary Science Reviews 9:253–272, https://doi.org/10.1016/0277-3791(90)90021-2.
  28. Cooper, A.K., P.F. Barrett, K. Hinz, V. Traube, G. Leitchenkov, and H.M.J. Stagg. 1991. Cenozoic prograding sequences of the Antarctic continental margin: A record of glacio-eustatic and tectonic events. Marine Geology 102:175–213, https://doi.org/10.1016/0025-3227(91)90008-R.
  29. Cooper, A.K., and F.J. Davey. 1987. The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea. Earth Science Series, Circumpacific Council on Economic and Mineral Resources, Houston, TX, 253 pp.
  30. Cooper, A.K., and P.E. O’Brien. 2004. Leg 188 synthesis: Transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. Pp. 1–42 in Proceedings of the Ocean Drilling Program, Scientific Results, vol. 188. A.K. Cooper, P.E. O’Brien, and C. Richter, eds, Ocean Drilling Program, College Station, TX.
  31. D’Agostino, A., and P.-N. Webb. 1980. Interpretation of mid-Miocene to Recent lithostratigraphy and biostratigraphy at DSDP Site 273, Ross Sea. Antarctic Journal of the United States 155:118–120.
    Davey, F.J., and L. De Santis. 2006. A multi-phase rifting model for the Victoria Land Basin, western Ross Sea. Pp. 303–308 in Antarctica: Contributions to Global Earth Sciences. D.K. Futterer, D. Damaske, G. Kleinschmidt. H. Miller, and F. Tessensohn, eds, Proceedings of the 9th International Symposium on Antarctic Earth Sciences, Springer-Verlag, Berlin, Heidelberg, New York.
  32. De Santis, L., J.B. Anderson, G. Brancolini, and I. Zayatz. 1995. Seismic record of late Oligocene through Miocene glaciation on the central and eastern continental shelf of the Ross Sea. Pp. 235–260 in Geology and Seismic Stratigraphy of the Antarctic Margin. A.K. Cooper, P.F. Barker, and G. Brancolini, eds, Antarctic Research Series, vol. 68, American Geophysical Union, Washington, DC.
  33. De Santis, L., G. Brancolini, and F. Donda. 2003. Seismo-stratigraphic analysis of the Wilkes Land continental margin (East Antarctica). Pp. 1,563–1,594 in Deep Sea Research Special Volume II (8-9), Recent Investigations of the Mertz Polynya and George Vth Land Continental Margin, East Antarctica. P. Harris, G. Brancolini, N. Bindoff, and L. De Santis, eds, Elsevier.
  34. De Santis, L., S. Prato, G. Brancolini, M. Lovo, and L. Torelli. 1999. The eastern Ross Sea continental shelf during the Cenozoic: Implications for the West Antarctic Ice Sheet development. Global and Planetary Change 23:173–196, https://doi.org/10.1016/S0921-8181(99)00056-9.
  35. DeConto, R.M., and D. Pollard. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249, https://doi.org/10.1038/nature01290.
  36. Donda, F., G. Brancolini, P.E. O’Brien, L. De Santis, and C. Escutia. 2007. Sedimentary processes in the Wilkes Land margin: A record of the Cenozoic East Antarctic Ice Sheet evolution. Journal of the Geological Society of London 164:243–256, https://doi.org/10.1144/0016-76492004-159.
  37. Dowdeswell, J.A., C. Ó Cofaigh, and C.J. Pudsey. 2004. Continental slope morphology and sedimentary processes at the mouth of an Antarctic palaeo-ice stream. Marine Geology 204:203–214, https://doi.org/10.1016/S0025-3227(03)00338-4.
  38. Escutia, C., S.L. Eittreim, A.K. Cooper, and C.H. Nelson. 2000. Morphology and acoustic character of the Antarctic Wilkes Land turbidite systems: Ice-sheet sourced vs. river-sourced fans. Journal of Sedimentary Research 70(1):84–93, https://doi.org/10.1306/2DC40900-0E47-11D7-8643000102C1865D.
  39. Ford, A.B., and P.J. Barrett. 1975. Basement rocks of the south-central Ross Sea, Site 270, DSDP Leg 28. Pp. 861–868 in Initial Reports of the Deep Sea Drilling Project, vol. 28. D.E. Hayes and L.A. Frakes, eds, Government Printing Office, Washington, DC.
  40. Francis, J.E. 2000. Fossil wood from Eocene high latitude forests, McMurdo Sound, Antarctica. Pp. 253–260 in Paleobiology and Palaeoenvironments of Eocene Rocks, McMurdo Sound, East Antarctica. J.D. Stilwell and R.M. Feldmann, eds, Antarctic Research Series, vol. 76, American Geophysical Union, Washington, DC.
  41. Francis, J.E., A. Ashworth, D.J. Cantrill, J.A. Crame, J. Howe, R. Stephens, A.-M. Tosolini, and V. Thorn. 2008. 100 million years of Antarctic climate evolution: Evidence from fossil plants. Pp. 19–27 in Antarctica: A Keystone in a Changing World. A.K. Cooper, P.J. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise, and the 10th ISAES editorial team, eds, Proceedings of the 10th International Symposium on Antarctic Earth Sciences, US Geological Survey Open File Report 2007-1047, The National Academies Press, Washington, DC, http://pubs.usgs.gov/of/2007/1047/kp/kp03.
  42. Haq, B.U., J. Hardenbol, and P.R. Vail. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:1,156–1,167, https://doi.org/10.1126/science.235.4793.1156.
  43. Hughes, T.J. 1975. The West Antarctic Ice Sheet: Instability, disintegration, and the initiation of ice ages. Reviews of Geophysics 13(4):502–526, https://doi.org/10.1029/RG013i004p00502.
  44. Hughes, T.J., G.H. Denton, B.G. Andersen, D.H. Schilling, J.L. Fastook, and C.S. Lingle. 1981. The last great ice sheets: A global view. Pp. 263–317 in The Last Great Ice Sheets. G.H. Denton and T.J. Hughes, eds, John Wiley & Sons, New York.
  45. Kennett, J. 1977. Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic Ocean, and their impact on global paleoceanography. Journal of Geophysical Research 82:3,843–3,860, https://doi.org/10.1029/JC082i027p03843.
  46. Kennett, J.P., and D.A. Hoddell. 1993. Evidence for relative climatic stability of Antarctica during the early Pliocene: A marine perspective. Geografiska Annaler 75A:204–220.
  47. Kominz, M.A., J. V. Browning, K.G. Miller, P.J. Sugarmanz, S. Mizintseva, and C.R. Scotese. 2008. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research 20:211–226, https://doi.org/10.1111/j.1365-2117.2008.00354.x.
  48. Kuvaas, B., and Y. Kristoffersen. 1991. The Crary Fan: A trough-mouth fan on the Weddell Sea continental margin, Antarctica. Marine Geology 97(3–4):345–362, https://doi.org/10.1016/0025-3227(91)90125-N.
  49. Larter, R., and P. Barker. 1989. Seismic stratigraphy of the Antarctic Peninsula Pacific margin: A record of Pliocene-Pleistocene ice volume and paleoclimate. Geology 17:731–734, https://doi.org/10.1130/0091-7613(1989)017<0731:SSOTAP>2.3.CO;2.
  50. Leckie, R.M., and P.-N. Webb. 1983. Late Oligocene–early Miocene glacial record of the Ross Sea, Antarctica: Evidence from DSDP Site 270. Geology 11:578–582, https://doi.org/10.1130/0091-7613(1983)11<578:LOMGRO>2.0.CO;2.
  51. Leckie, R.M., and P.-N. Webb. 1986. Late Paleogene and early Neogene foraminifera of Deep Sea Drilling Project Site 270, Ross Sea, Antarctica. Pp. 1,093–1,142 in Initial Reports of the Deep Sea Drilling Project, vol. 90. J.H. Blakeslee, eds, Government Printing Office, Washington D.C., http://www.deepseadrilling.org/90/volume/dsdp90pt2_24.pdf.
  52. Levy, R.H., and D.M. Harwood. 2000a. Sedimentary lithofacies of the McMurdo Sound erratics. Pp. 39–61 in Paleobiology and Paleoenvironments of Eocene Rocks, McMurdo Sound, East Antarctica. J.D. Stilwell and R.M. Feldmann, eds, Antarctic Research Series, vol. 76, American Geophysical Union, Washington, DC.
  53. Levy, R.H., and D.M. Harwood. 2000b. Tertiary marine palynomorphs from the McMurdo Sound erratics, Antarctica. Pp. 183–242 in Paleobiology and Paleoenvironments of Eocene Rocks, McMurdo Sound, East Antarctica. J.D. Stilwell and R.M. Feldmann, eds, Antarctic Research Series, vol. 76, American Geophysical Union, Washington, DC.
  54. Lewis, A., D. Marchant, A. Ashworth, S. Hemming, and M. Machlus. 2007. Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains. Geological Society of America Bulletin 119:1,449–1,461, https://doi.org/10.1130/0016-7606(2007)119[1449:MMMGCC]2.0.CO;2.
  55. Lewis, A., D. Marchant, D. Kowaleski, S. Baldwin, and L. Webb. 2006. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean. Geology 34:513–516, https://doi.org/10.1130/G22145.1.
  56. Lisiecki, L.E., and M.E. Raymo. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003, https://doi.org/10.1029/2004PA001071.
  57. Marchant, D., and G. Denton. 1996a. Miocene and Pliocene paleoclimate of the Dry Valleys region, Southern Victoria Land: A geomorphological approach. Marine Micropaleontology 27:253–271, https://doi.org/10.1016/0377-8398(95)00065-8.
  58. Marchant, D., G. Denton, C. Swisher, and N. Potter. 1996b. Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys Region of Southern Victoria Land. Geological Society of America Bulletin 108:181–194, https://doi.org/10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2.
  59. McDougall, I. 1977. Potassium–Argon dating of glauconite from a greensand drilled at Site 270 in the Ross Sea, DSDP Leg 28. Pp. 1,071–1,072 in Initial Reports of the Deep Sea Drilling Project, vol. 36. P.F. Barker, I.W.D. Dalziel, et al., US Government Printing Office, Washington, DC, https://doi.org/10.2973/dsdp.proc.36.281.1977.
  60. Mercer, J.H. 1978. West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster. Nature 271:321–325, https://doi.org/10.1038/271321a0.
  61. Miller, K.G., J.D. Wright, J.V. Browning, A. Kulpecz, M. Kominz, T.R. Naish, B.S. Cramer, Y. Rosenthal, W.R. Peltier, and S. Sosdian. 2012. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 40(5):407–410, https://doi.org/10.1130/G32869.1.
  62. Nielsen, T., L. De Santis, T. Dahlgren, A. Kuijpers, J.S. Laberg, A. Nygård, D. Praeg, and M.S. Stoker. 2005. A comparison of the NW European glaciated margin with other glaciated margins. Marine and Petroleum Geology 22:1,149–1,183, https://doi.org/10.1016/j.marpetgeo.2004.12.007.
  63. Ó Cofaigh, C., J. Taylor, J.A. Dowdeswell, and C.J. Pudsey. 2003. Paleo-ice streams, trough mouth fans and high latitude continental slope sedimentation. Boreas 32:37–55.
  64. O’Brien, P.E., I. Goodwin, C.-F. Forsberg, A.K. Cooper, and J. Whitehead. 2007. Late Neogene ice drainage changes in Prydz Bay, East Antarctica and the interaction of Antarctic ice sheet evolution and climate. Palaeogeography, Palaeoclimatology, Palaeoecology 245:390–410, https://doi.org/10.1016/j.palaeo.2006.09.002.
  65. Powell, R.D., and J.M. Cooper. 2002. A glacial sequence stratigraphic model for temperate, glaciated continental shelves. Geological Society, London, Special Publications 203:215–244, https://doi.org/10.1144/GSL.SP.2002.203.01.12.
  66. Powell, R.D., and E. Domack. 1995. Modern glaciomarine environments. Pp. 445–486 in Modern Glacial Environments: Processes, Dynamics and Sediments. J. Menzies, ed., Butterworth-Heinemann Ltd.
  67. Rebesco, M., A. Camerlenghi, R. Geletti, and M. Canals. 2006. Margin architecture reveals the transition to the modern Antarctic ice sheet ca. 3 Ma. Geology 34:301–304, https://doi.org/10.1130/G22000.1.
  68. Rossetti, F., F. Storti, M. Busetti, F. Lisker, G. Di Vincenzo, A.L. Laufer, S. Rocchi, and F. Salvini. 2006. Eocene initiation of Ross Sea dextral faulting and implications for East Antarctic neotectonics. Journal of the Geological Society 163:119–126, https://doi.org/10.1144/0016-764905-005.
  69. Sagnotti, L., F. Florindo, K.L. Verosub, G.S. Wilson, and A.P. Roberts. 1998. Environmental magnetic record of Antarctic palaeoclimate from Eocene/Oligocene glaciomarine sediments, Victoria Land Basin. Geophysical Journal International 134:653–662, https://doi.org/10.1046/j.1365-246x.1998.00559.x.
  70. Salvini, F., G. Brancolini, M. Busetti, F. Storti, F. Mazzarini, and F. Coren. 1997. Cenozoic geodynamics of the Ross Sea region, Antarctica: Crustal extension, intraplate strike-slip faulting, and tectonic inheritance. Journal of Geophysical Research 102(B11):24,669–24,696; https://doi.org/10.1029/97JB01643.
  71. Shackleton, N.J., and J.P. Kennett. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon analysis in DSDP Sites 277, 279, and 281. Pp. 743–755 in Initial Reports of the Deep Sea Drilling Project, vol. 29. J.P. Kennett, R.E. Houtz, et al., US Government Printing Office, Washington, DC, https://doi.org/10.2973/dsdp.proc.29.117.1975.
  72. Shipp, S., J. Anderson, and E. Domack. 1999. Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 1—Geophysical results. Geological Society of America Bulletin 111:1,486–1,516, https://doi.org/10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2.
  73. Sorlien, C., B.P. Luyendyk, D.S. Wilson, R.C. Decesari, L.R. Bartek, and J.B. Diebold. 2007. Oligocene development of the West Antarctic Ice Sheet recorded in eastern Ross Sea strata. Geology 35(5):467–470, https://doi.org/10.1130/G23387A.1.
  74. Steinhauff, D.M., and P.N. Webb. 1987. Miocene foraminifera from DSDP Site 270, Ross Sea. Antarctic Journal of the United States 22(5):125–126.
  75. ten Brink, U.S., C. Schneider, and A.H. Johnson. 1995. Morphology and stratal geometry of the Antarctic continental shelf: insights from models. Pp. 1–24 in Geology and Seismic Stratigraphy of the Antarctic Margin. Antarctic Research Series, vol. 68, A.K. Cooper, P.F. Barker, and G. Brancolini, eds, American Geophysical Union, Washington, DC.
  76. Vorren, T.O., E. Lebesbye, K. Andreassen, and K.B. Larsen. 1989. Glacigenic sediments on a passive continental margin as exemplified by Barents Sea. Marine Geology 85:251–272, https://doi.org/10.1016/0025-3227(89)90156-4.
  77. Warny, S., R. Askin, M. Hannah, B. Mohr, J.I. Raine, D. Harwood, F. Florindo, and SMS Science Team. 2009. Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene. Geology 37:955–958, https://doi.org/10.1130/G30139A.1.
  78. Whillans, I.M., and C.J. van der Veen. 1993. New and improved determinations of velocity of ice streams B and C, West Antarctica. Journal of Glaciology 39:483–490.
  79. Wilson D.S., S.S.R. Jamieson, P.J. Barrett, G. Leitchenkov, K. Gohl, and R.D. Larter. 2011. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 335:24–34, https://doi.org/10.1016/j.palaeo.2011.05.028.
  80. Wilson, D., and B. Luyendyk. 2009. West Antarctic paleotopography estimated at the Eocene-Oligocene climate transition. Geophysical Research Letters 36, L16302, https://doi.org/10.1029/2009GL039297.
  81. Wilson, G.J. 1989. Marine palynology. Pp. 129–133 in Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound. P.J. Barrett, ed., New Zealand DSIR Bulletin, vol. 245, Wellington, New Zealand.
  82. Zachos, J., G. Dickens, and R. Zeebe. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283, https://doi.org/10.1038/nature06588.
  83. Zachos, J.C., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693, https://doi.org/10.1126/science.1059412.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.