Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 01

View Issue TOC
Volume 32, No. 1
Pages 64 - 71

OpenAccess

Gauging Quaternary Sea Level Changes Through Scientific Ocean Drilling

By Yusuke Yokoyama , Anthony Purcell, and Takeshige Ishiwa 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Indicators of past sea level play a key role in tracking the history of global climate. Variations in global sea level are controlled mainly by growth and decay of continental glaciers and temperatures that are closely correlated with the mean global climate state (glacial and interglacial cycles). Our understanding of global climate and sea level has benefited significantly from improvements in ocean floor sampling achieved by the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling and International Ocean Discovery Programs (IODP), as well as from the application of new analytical techniques and isotope mass spectrometry. This paper presents an overview of recent advances in paleo-sea level studies based on analysis of samples and data from deep-sea sediment cores and drowned coral reefs obtained through ODP and IODP. Future scientific ocean drilling will contribute further to studies of ice sheet dynamics under different climatic boundary conditions.

Citation

Yokoyama, Y., A. Purcell, and T. Ishiwa. 2019. Gauging quaternary sea level changes through scientific ocean drilling. Oceanography 32(1):64–71, https://doi.org/10.5670/oceanog.2019.121.

References
    Ahn, S., D. Khider, L.E. Lisiecki, and C.E. Lawrence. 2017. A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model. Dynamics and Statistics of the Climate System 2(1), https://doi.org/10.1093/climsys/dzx002.
  1. Andrews, J.T. 1992. A case of missing water. Nature 358:281, https://doi.org/10.1038/358281a0.
  2. Austermann, J., J.X. Mitrovica, K. Latychev, and G.A. Milne. 2013. Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate. Nature Geoscience 6(7):553–557, https://doi.org/10.1038/ngeo1859.
  3. Bard, E., B. Hamelin, and D. Delanghe-Sabatier. 2010. Deglacial Meltwater Pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327:1,235–1,237, https://doi.org/10.1126/science.1180557.
  4. Camoin, G.F., P. Ebren, A. Eisenhauer, E. Bard, and G. Faure. 2000. A 300,000-yr coral reef record of sea-level changes, Mururoa Atoll (Tuamotu archipelago, French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology 175:325–341.
  5. Camoin, G.F., Y. Iryu, D.B. McInroy, and the Expedition 310 Scientists. 2007a. Proceedings of the Integrated Ocean Drilling Program, Volume 310. Integrated Ocean Drilling Program Management International Inc., Washington, DC, https://doi.org/​10.2204/iodp.proc.310.2007.
  6. Camoin, G.F., Y. Iryu, and D.B. McInroy, and the Expedition 310 Scientists. 2007b. IODP Expedition 310 reconstructs sea level, climatic and environmental changes in the South Pacific during the last deglaciation. Scientific Drilling 5:4–12, https://doi.org/​10.2204/iodp.sd.5.01.2007.
  7. Camoin, G.F., C. Seard, P. Deschamps, J.M. Webster, E. Abbey, J.C. Braga, Y. Iryu, N. Durand, E. Bard, B. Hamelin, and others. 2012. Reef response to sea-level and environmental changes during the last deglaciation: IODP Expedition 310, Tahiti Sea Level. Geology 40:643–646, https://doi.org/10.1130/G32057.1.
  8. Cheng, H., R.L. Edwards, W.S. Broecker, G.H. Denton, X. Kong, Y. Wang, R. Zhang, and X. Wang. 2009. Ice age terminations. Science 326:248–252, https://doi.org/​10.1126/science.1177840.
  9. Clark, J.A., and C.S. Lingle. 1977. Future sea-level changes due to West Antarctic Ice Sheet fluctuations. Nature 269:206–209, https://doi.org/​10.1038/269206a0.
  10. Clark, P.U., J.X. Mitrovica, G.A. Milne, and M.E. Tamisiea. 2002. Sea-level fingerprinting as a direct test for the source of global meltwater pulse 1a. Science 295:2,438–2,441, https://doi.org/​10.1126/science.1068797.
  11. CLIMAP. 1981. Seasonal reconstruction of the Earth’s surface at the last glacial maximum. Geological Society of America Map and Chart Series, C36, 18 pp.
  12. Dansgaard, W., J.W.C. White, and S.J. Johnsen. 1989. The abrupt termination of the Younger Dryas climate event. Nature 339:532–534, https://doi.org/​10.1038/339532a0.
  13. Dendy, S., J. Austermann, J.R. Creveling, and J.X. Mitrovica. 2017. Sensitivity of Last Interglacial sea-level high stands to ice sheet configuration during marine isotope stage 6. Quaternary Science Reviews 171:234–244, https://doi.org/10.1016/​j.quascirev.2017.06.013.
  14. Denton, G.H., and T.J. Hughes. 1981. The Last Great Ice Sheets. Wiley, 484 pp.
  15. Deschamps, P., N. Durand, E. Bard, B. Hamelin, G. Camoin, A.L. Thomas, G.M. Henderson, J. Okuno, and Y. Yokoyama. 2012. Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years ago. Nature 483(7391):559–564, https://doi.org/10.1038/nature10902.
  16. de Vernal, A., and C. Hillaire-Marcel. 2008. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320:1,622–1,625, https://doi.org/10.1126/science.1153929.
  17. Edwards, L.R., J.W. Beck, G.S. Burr, D.J. Donahue, J.M.A. Chappell, A.L. Bloom, E.R.M. Druffel, and F.W. Taylor. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260:962–968, https://doi.org/10.1126/science.260.5110.962.
  18. Fairbanks, R.G. 1989. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting dates on Younger Dryas event and deep ocean circulation. Nature 342:637–642, https://doi.org/​10.1038/342637a0.
  19. Felis, T., H.V. McGregor, B.K. Linsley, A.W. Tudhope, M.K. Gagan, A. Suzuki, M. Inoue, A.L. Thomas, T.M. Esat, W.G. Thompson, and others. 2014. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nature Communications 5:4102, https://doi.org/10.1038/ncomms5102.
  20. Fujita, K., A. Omori, Y. Yokoyama, S. Sakai, and Y. Iryu. 2010. Sea-level rise during Termination II inferred from large benthic foraminifers: IODP Expedition 310, Tahiti Sea Level. Marine Geology 271(1–2):149–155, https://doi.org/10.1016/​j.margeo.2010.01.019.
  21. Hanebuth, T., K. Stattegger, and P.M. Grootes. 2000. Rapid flooding of the Sunda Shelf: A late-​glacial sea-level record. Science 288:1,033–1,035, https://doi.org/​10.1126/science.288.5468.1033.
  22. Hay, C.C., H. Lau, N. Gomez, J. Austermann, E. Powell, J.X. Mitrovica, K. Latychev, and D.A. Wiens. 2017. Sea level fingerprints in a region of complex Earth structure: The case of WAIS. Journal of Climate 30:1,881–1,892, https://doi.org/10.1175/JCLI-D-16-0388.1.
  23. Hays, J.D., J. Imbrie, and N.J. Shackelton. 1976. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194:1,121–1,132, https://doi.org/10.1126/science.194.4270.1121.
  24. Hoddell, D.A., S.L. Kanfoush, A. Shemesh, X. Crosta, C.D. Charles, and T.P. Guilderson. 2001. Abrupt cooling of Antarctic surface waters and sea ice expansion in the south Atlantic sector of the southern ocean at 5000 cal yr B.P. Quaternary Research 56:191–198, https://doi.org/10.1006/qres.2001.2252.
  25. Kanfoush, S.L., D.A. Hoddell, C.D. Charles, T.P. Guilderson, and P.G. Mortyn. 2000. Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science 288:815–818, https://doi.org/10.1126/science.288.5472.1815.
  26. Lambeck, K. 1989. Geophysical Geodesy: The Slow Deformations of the Earth. Oxford University Press, 709 pp.
  27. Lambeck, K., H. Rouby, A. Purcell, Y. Sun, and M. Sambridge. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America 111(43):15,296–15,303, https://doi.org/​10.1073/​pnas.1411762111.
  28. Lisiecki, L.E., and M.E. Raymo. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1), https://doi.org/​10.1029/​2004PA001071.
  29. Miller, K.G., G.S. Mountain, J.D. Wright, and J.V. Browning. 2011. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24(2):40–53, https://doi.org/​10.5670/oceanog.2011.26.
  30. Peltier, W.R., D.F. Argus, and R. Drummond. 2015. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research 120(1):450–487, https://doi.org/10.1002/2014JB011176.
  31. Raymo, M.E., R. Kozon, D. Evans, L. Lisiecki, and H.L. Ford. 2018. The accuracy of mid-Pliocene δ18O-based ice volume and sea level reconstructions. Earth-Science Reviews 177:291–302, https://doi.org/​10.1016/​j.earscirev.2017.11.022.
  32. Rohling, E.J., G.L. Foster, K.M. Grant, G. Marino, A.P. Roberts, M.E. Tamisiea, and F. Williams. 2014. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508(7497):477–482, https://doi.org/10.1038/nature13230.
  33. Rosenthal, Y., A. Morley, C. Barras, M. Katz, F. Jorissen, G.J. Reichart, D.W. Oppo, and B.K. Linsley. 2011. Temperature calibration of Mg/Ca ratios in the intermediate water benthic foraminifer Hyalinea balthica. Geochemistry, Geophysics, Geosystems 12(4), https://doi.org/​10.1029/2010GC003333.
  34. Rovere, A., P.J. Hearty, J. Austermann, J.X. Mitrovica, J. Gale, R. Moucha, A.M. Forte, and M.E. Raymo. 2015. Mid-Pliocene shorelines of the US Atlantic coastal plain: An improved elevation database with comparison to Earth model predications. Earth-Science Reviews 145:117–131, https://doi.org/​10.1016/j.earscirev.2015.02.007.
  35. Rovere, A., P. Khanna, C.N. Bianchi, A.W. Droxler, C. Morri, and D.F. Naar. 2018. Submerged reef terraces in the Maldivian Archipelago (Indian Ocean). Geomorphology 317:218–232, https://doi.org/​10.1016/j.geomorph.2018.05.026.
  36. Shackleton, N.J. 1967. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215:15–17, https://doi.org/10.1038/215015a0.
  37. Thomas, A.L., G. Henderson, P. Deschamps, Y. Yokoyama, A.J. Mason, E. Bard, B. Hamelin, N. Durand, and G. Camoin, 2009. Penultimate deglacial sea level timing from uranium/thorium dating of Tahitian corals. Science 324:1,186–1,189, https://doi.org/10.1126/science.1168754.
  38. Webster, J.M., Y. Yokoyama, C. Cotterill, and the Expedition 325 Scientists. 2011. Proceedings of the Integrated Ocean Drilling Program, Volume 325. Integrated Ocean Drilling Program Management International Inc., Tokyo, Japan, https://doi.org/​10.2204/iodp.proc.325.2011.
  39. Webster, J.M., J.C. Braga, M. Humblet, D.C. Potts, Y. Iryu, Y. Yokoyama, K. Fujita, R. Bourillot, T.M. Esat, S. Fallon, and others. 2018. Response of the Great Barrier Reef to sea level and environmental changes over the past 30,000 years. Nature Geoscience 11:426-432, https://doi.org/10.1038/s41561-018-0127-3.
  40. Whitehouse, P.L., M.J. Bentley, and A.M. Le Brocq. 2012. A deglacial model for Antarctica: Geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quaternary Science Reviews 32:1–24, https://doi.org/10.1016/j.quascirev.2011.11.016.
  41. Woodroffe, C.D. 2002. Coasts: Form, Process and Evolution. Cambridge University Press, 623 pp.
  42. Yamane, M., Y. Yokoyama, A. Abe-Ouchi, S. Obrochta, F. Saito, K. Moriwaki, and H. Matsuzaki. 2015. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics. Nature Communications 6:7016, https://doi.org/10.1038/ncomms8016.
  43. Yokoyama, Y., K. Lambeck, P. DeDeckker, P. Johnston, and L.K. Fifield. 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406:713–716, https://doi.org/​10.1038/​35021035.
  44. Yokoyama, Y., and T.M. Esat. 2011. Global climate and sea level: Enduring variability and rapid fluctuations over the past 150,000 years. Oceanography 24(2):54–69, https://doi.org/​10.5670/oceanog.2011.27.
  45. Yokoyama, Y., and T.M. Esat. 2015. Coral reefs. Pp. 104–124 in Handbook of Sea-Level Research. I. Shennan, A. Long, and B. Horton, eds, John Wiley & Sons, Chichester, UK.
  46. Yokoyama, Y., J.M. Webster, C. Cotterill, J.C. Braga, L. Jovane, H. Mills, and the Expedition 325 Scientists. 2011. IODP Expedition 325: Great Barrier Reefs reveals past sea-level, climate and environmental changes during the end of the last ice age. Scientific Drilling 12:32–45, https://doi.org/10.2204/iodp.sd.12.04.2011.
  47. Yokoyama, Y., T.M. Esat, W.G. Thompson, A.L. Thomas, J. Webster, Y. Miyairi, C. Sawada, T. Aze, H. Matsuzaki, J. Okuno, and others. 2018. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 559:603–607, https://doi.org/10.1038/s41586-018-0335-4.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.