Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 03

View Issue TOC
Volume 27, No. 3
Pages 68 - 79

OpenAccess

Forecasting the Ocean's Optical Environment Using the BioCast System

By Jason Keith Jolliff , Sherwin Ladner, Richard Crout , Paul Lyon, Kenneth Matulewski, Robert A. Arnone, and David Lewis  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The Bio-Optical Forecasting (BioCast) system is a model that provides the US Navy with short-term forecasts of the ocean’s optical environment. The forecasts are required to support a broad spectrum of naval operations, including mine countermeasure, anti-submarine, and expeditionary warfare operations. The BioCast system works by treating any geo-referenced surface ocean optical property provided via the US Navy’s satellite data processing systems as a prognostic state variable. BioCast will then ingest operational ocean model velocity forecasts and calculate the three-dimensional optical property (pseudo-tracer) transport. BioCast verification statistics generated via forecast comparison to “next-day” satellite images show superior performance over 24-hour persistence of composite satellite data. Future operational modifications to BioCast, such as complex internal transformation submodels, must demonstrate superior performance to the established benchmark metrics and/or persistence over the operational forecast time horizon. Future BioCast applications will expand to include an interface with three-dimensional system performance simulation techniques that will predict how specific US Navy sensors will perform in the ocean’s optical environment.

Citation

Jolliff, J.K., S. Ladner, R. Crout, P. Lyon, K. Matulewski, R.A. Arnone, and D. Lewis. 2014. Forecasting the ocean’s optical environment using the BioCast system. Oceanography 27(3):68–79, https://doi.org/10.5670/oceanog.2014.69.

References
    Allard, R., E. Rogers, P. Martin, T. Jensen, P. Chu, T. Campbell, J. Dykes, T. Smith, J. Choi, and U. Gravois. 2014. The US Navy coupled ocean-wave prediction system. Oceanography 27(3):92–103, https://doi.org/10.5670/oceanog.2014.71.
  1. Barron, C.N., A.B. Kara, P.J. Martin, R.C. Rhodes, and L.F. Smedstad. 2006. Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). Ocean Modelling 11:347–375, https://doi.org/10.1016/j.ocemod.2005.01.004.
  2. Binding, C.E., D.G. Bowers, and E.G. Mitchelson-Jacob. 2005. Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters: The impact of variable particle scattering properties. Remote Sensing of Environment 94:373–383, https://doi.org/10.1016/j.rse.2004.11.002.
  3. Caesar, G.J. 56 BCE. Comentarii de Bello Gallico. The Gallic Wars, Book 3. As translated by W.A. McDevitte and W.S. Bohn, 1869. New York, Harper & Brothers.
  4. Caesar, G.J. 55 BCE. Comentarii de Bello Gallico. The Gallic Wars, Book 4. As translated by W.A. McDevitte and W.S. Bohn, 1869. New York, Harper & Brothers.
  5. Campbell, J.W. 1995. The lognormal distribution as a model for bio-optical variability in the sea. Journal of Geophysical Research 100(C7):13,237–13,254, https://doi.org/10.1029/95JC00458.
  6. Chang, G., K. Mahoney, A. Briggs-Whitmire, D.D.R. Kohler, C.D. Mobley, M. Lewis, M.A. Moline, E. Boss, M. Kim, W. Philpot, and T.D. Dickey. 2004. The new age of hyperspectral oceanography. Oceanography 17(2):16–23, https://doi.org/10.5670/oceanog.2004.43.
  7. Corson, M.R., and C.O. Davis. 2011. A new view of the coastal oceans from the space station. Eos Transactions, American Geophysical Union 92(19):161, https://doi.org/10.1029/2011EO190001.
  8. Cunningham, A., D. McKee, S. Craig, G. Tarran, and C. Widdicombe. 2003. Fine-scale variability in phytoplankton community structure and inherent optical properties measured from an autonomous underwater vehicle. Journal of Marine Systems 43:51–59, https://doi.org/10.1016/S0924-7963(03)00088-5.
  9. Doyle, J.D., R.M. Hodur, S. Chen, Y. Jin, J.R. Moskaitis, S. Wang, E.A. Hendricks, H. Jin, and T.A. Smith. 2014. Tropical cyclone prediction using COAMPS-TC. Oceanography 27(3):104–115, https://doi.org/10.5670/oceanog.2014.72.
  10. Geider, R.J. 1987. Light and temperature dependence of the carbon to chlorophyll ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytologist 106:1–34, https://doi.org/10.1111/j.1469-8137.1987.tb04788.x.
  11. Giannini, M.F.C., C.A.E. Garcia, V.M. Tavano, and Á.M. Ciotti. 2013. Effects of low-salinity and high-turbidity waters on empirical ocean colour algorithms: An example for Southwestern Atlantic waters. Continental Shelf Research 59:84–96, https://doi.org/10.1016/j.csr.2013.04.013.
  12. Jolliff, J.K., J.C. Kindle, I. Shulman, B. Penta, M.A.M. Friedrichs, R. Helber, and R.A. Arnone. 2009. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. Journal of Marine Systems 76:64–82, https://doi.org/10.1016/j.jmarsys.2008.05.014.
  13. Kowalczuk, P., W.J. Cooper, M.J. Durako, A.E. Kahn, M. Gonsior, and H. Young. 2010. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations. Marine Chemistry 118:22–36, https://doi.org/10.1016/j.marchem.2009.10.002.
  14. Ladner, S., A. Lawson, P. Martinolich, J. Bowers, G. Fargion, and R. Arnone. 2013. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.8. US NRL Technical Memorandum Report. NRL/MR/7330—13-9465, http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA588071.
  15. Lewis, D., R.W. Gould, A. Weidemann, S. Ladner, and Z. Lee. 2013. Bathymetry estimations using vicariously calibrated HICO data. In Proceedings of SPIE 8724. Ocean Sensing and Monitoring V, 87240N, https://doi.org/10.1117/12.2017864.
  16. Metzger, E.J., O.M. Smedstad, P.G. Thoppil, H.E. Hurlburt, J.A. Cummings, A.J. Wallcraft, L. Zamudio, D.S. Franklin, P.G. Posey, M.W. Phelps, and others. 2014. US Navy operational global ocean and Arctic ice prediction systems. Oceanography 27(3):32–43, https://doi.org/10.5670/oceanog.2014.66.
  17. Mobley, C.D. 1994. Light and Water. Academic Press, San Diego, CA, 595 pp.
  18. Molenkamp, C.R. 1967. Accuracy of finite-difference methods applied to the advection equation. Journal of Applied Meteorology 7:160–167, https://doi.org/10.1175/1520-0450(1968)007<0160:AOFDMA>2.0.CO;2.
  19. O’Reilly, J.E., S. Maritorena, M.C. O’Brien, D.A. Siegel, D. Toole, D. Menzies, R.C. Smith, J.L. Mueller, B.G. Mitchell, M. Kahru, and others. 2000. Postlaunch Calibration and Validation Analysis, Part 3. NASA Technical Memorandum 2000-206892, vol., 11, SeaWIFS Postlaunch Technical Report Series, S.B. Hooker and E.R. Firestone, eds, NASA Goddard Space Flight Center, 49 pp., http://oceancolor.gsfc.nasa.gov/REPROCESSING/SeaWiFS/R3/Documents/postlaunch_Volume11.pdf.
  20. Rhodes, R.C., H.E. Hurlburt, A.J. Wallcraft, C.N. Barron, P.J. Martin, O.M. Smedstad, S.L. Cross, and A.B. Kara. 2002. Navy real-time global modeling systems. Oceanography 15(1):29–43, https://doi.org/10.5670/oceanog.2002.34.
  21. Rowley, C., and A. Mask. 2014. Regional and coastal prediction with the Relocatable Ocean Nowcast/Forecast System. Oceanography 27(3):44–55, https://doi.org/10.5670/oceanog.2014.67.
  22. Schofield, O., T. Bergmann, M.J. Oliver, A. Irwin, G. Kirkpatrick, W.P. Bissett, M.A. Moline, and C. Orrico. 2004. Inversion of spectral absorption in the optically complex coastal waters of the Mid-Atlantic Bight. Journal of Geophysical Research 109, C12504, https://doi.org/10.1029/2003JC002071.
  23. Schofield, O., M.M. Moline, and B.B. Prezelin. 1995. Palmer LTER: Photoacclimation in a coastal phytoplankton bloom. Antarctic Journal of the United States 30(5):260–262.
  24. Siegel, D.A., S. Maritorena, N.B. Nelson, D.A. Hansell, and M. Lorenzi-Kayser. 2002. Global distribution and dynamics of colored dissolved and detrital organic materials. Journal of Geophysical Research 107(C12):3,228, https://doi.org/10.1029/2001JC000965.
  25. Sournia, A., M.-J. Chrdtiennot-Dinet, and M. Richard. 1991. Marine phytoplankton: How many species in the world ocean? Journal of Plankton Research 13:1,093–1,099, https://doi.org/10.1093/plankt/13.5.1093.
  26. Taylor, K.E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research 106(D7):7,183–7,192, https://doi.org/10.1029/2000JD900719.
  27. Vegetius Renatus, P.F. 432 (est.). Epitoma rei militaris, sive institutorum rei militaris libri quinque. As translated by P.D. Emanuele in “Vegetius on the Roman Navy: Translation and Commentary, Book Four, 31–46,” MA Thesis, University of British Columbia, 1974.
  28. Vodacek, A., N.V. Blough, M.D. DeGrandpre, E.T. Peltzer, and R.K. Nelson. 1997. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnology and Oceanography 42(4):674–688, https://doi.org/10.4319/lo.1997.42.4.0674.
  29. Zaneveld, J.R.V., and W.S. Pegau. 2003. Robust underwater visibility parameter. Optics Express 11:2,997–3,009, https://doi.org/10.1364/OE.11.002997.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.