First Paragraph
Measuring and interpreting the optical properties of ocean waters has been, and continues to be a challenging endeavor in oceanography. Just as the measurements of temperature~ salinity and density (TSD) have vexed oceanographers for perhaps two centuries, so it goes in the struggle to measure and understand ocean optical properties. Advances in technology have played a central role in advancing our ability to accurately measure TSD and optical properties, but technology alone certainly does not solve the problems. It takes, of course, the concerted efforts of scientists and engineers to take advantage of and properly apply the available technology. Commercialization of instrumentation also plays a key role in advancing our scientific measurement capabilities, especially in a field like oceanography where large numbers of quantitative observations are needed over a wide range of space and time scales. Indeed, one could argue that our understanding of the motions of the oceans underwent a revolution with the introduction of widely available commercial instruments, enabling oceanographers to obtain far more extensive data on the distribution of TSD than had previously been possible. More widely available and faster computers also emerged during the same period, which facilitated both the quicker processing of the rapidly increasing datasets and the modeling of the equations of motion. But without the large and accurate datasets, the models would surely be impotent.