Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 04

View Issue TOC
Volume 31, No. 4
Pages 81 - 91

OpenAccess

Effects of a Chronic Oil Spill on the Planktonic System in San Jorge Gulf, Argentina: A One-Vertical-Dimension Modeling Approach

By Philippe Klotz, Irene R. Schloss, and Dany Dumont 
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

Known for its high biological productivity, San Jorge Gulf (SJG) in Argentinian Patagonia is also an area of oil exploitation. To understand the dynamics of the SJG plankton ecosystem under several scenarios of potential hydrocarbon (HC) contamination, we present an 11-compartment biogeochemical model coupled to a turbulence model. In the coupled model, we parameterize the main physical and biological processes related to HC contamination, such as biodegradation, growth, and mortality of phyto-, zoo-, and bacterioplankton. Planktonic responses to several levels of HC contamination are studied for two physically contrasting SJG environments, a tidally well-mixed water column and a stratified water column. Results show increasing phyto- and bacterioplankton biomass with increasing HC concentration, which in turn produces more detritus. Zooplankton communities seem to respond differently depending on HC concentration, with major indirect changes occurring in the different size classes. Effects of HC contamination on biological compartments are stronger in the stratified than in the well-mixed environment.

Citation

Klotz, P., I.R. Schloss, and D. Dumont. 2018. Effects of a chronic oil spill on the planktonic system in San Jorge Gulf, Argentina: A one-vertical-​dimension modeling approach. Oceanography 31(4):81–91, https://doi.org/10.5670/oceanog.2018.413.

Supplementary Materials
References
    Acha, E.M., H.W. Mianzan, R.A. Guerrero, M. Favero, and J. Bava. 2004. Marine fronts at the continental shelves of austral South America: Physical and ecological processes. Journal of Marine Systems 44(1–2):83–105, https://doi.org/10.1016/​j.jmarsys.2003.09.005.
  1. Akselman, R. 1996. Estudios Ecológicos en el Golfo San Jorge y Adyacencias (Atlántico Sudoccidental). Distribución, abundancia y variación estacional del fitoplancton en relación a factores físico-químicos y la dinámica hidrológica. Universidad de Buenos Aires. Tesis, 154 pp.
  2. Almeda, R., Z. Wambaugh, Z. Wang, C. Hyatt, Z. Liu, and E.J. Buskey. 2013. Interactions between zooplankton and crude oil: Toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons. PloS ONE 8(6):e67212, https://doi.org/10.1371/​journal.pone.0067212.
  3. Anderson, J.W., J.M. Neff, B.A. Cox, H.E. Tatem, and G.M. Hightower. 1974. Characteristics of dispersions and water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Marine Biology 27(1):75–88, https://doi.org/10.1007/BF00394763.
  4. Atlas, R.M. 1981. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiology and Molecular Biology Reviews 45(1):180–209.
  5. Atlas, R.M., and R. Bartha. 1972. Degradation and mineralization of petroleum in seawater: Limitation by nitrogen and phosphorous. Biotechnology and Bioengineering 14(3):309–318, https://doi.org/​10.1002/bit.260140304.
  6. Baker, J.M. 1971. Seasonal effects of oil pollution on salt marsh vegetation. Oikos 22(1):106–110, https://doi.org/10.2307/3543368.
  7. Beazley, M.J., R.J. Martinez, S. Rajan, J. Powell, Y.M. Piceno, L.M. Tom, G.L. Andersen, T.C. Hazen, J.D. van Nostrand, J. Zhou, and others. 2012. Microbial community analysis of a coastal salt marsh affected by the Deepwater Horizon oil spill. PLoS ONE 7(7), https://doi.org/10.1371/journal.pone.0041305.
  8. Burchard, H., K. Bolding, W. Kühn, A. Meister, T. Neumann, and L. Umlauf. 2006. Description of a flexible and extendable physical–biogeochemical model system for the water column. Journal of Marine Systems 61(3–4):180–211, https://doi.org/​10.1016/j.jmarsys.2005.04.011.
  9. Cabioch, L., J.C. Dauvin, F. Gentil, C. Retière, and V. Rivain. 1981. Perturbations induites dan la composition et le fonctionnement des peuplements benthiques sublittoraux, sous l’effet des hydrocarbures de l’Amoco Cadiz. Pp. 513–526 in Amoco Cadiz, Fates and Effects of the Oil Spill. CNEXO, Paris.
  10. Carreto, J.I., M.O. Carignan, N.G. Montoya, and A.D. Cucchi Colleoni. 2007. Ecología del fitoplancton en los sistemas frontales del Mar Argentino. Pp. 11–31 in El Ecosistema Marino. J.I. Carreto and C. Bremen, eds, INIDEP.
  11. Dubinsky, E.A., M.E. Conrad, R. Chakraborty, M. Bill, S.E. Borglin, J.T. Hollibaugh, O.U. Mason, Y.M. Piceno, F.C. Reid, W.T. Stringfellow, and others. 2013. Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Science & Technology 47(19):10,860–10,867, https://doi.org/​10.1021/​es401676y.
  12. Dunstan, W.M., L.P. Atkinson, and J. Natoli. 1975. Stimulation and inhibition of phytoplankton growth by low molecular weight hydrocarbons. Marine Biology 31(4):305–310, https://doi.org/10.1007/BF00392087.
  13. Fasham, M.J.R., H.W. Ducklow, and S.M. McKelvie. 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. Journal of Marine Research 48(3):591–639, https://doi.org/​10.1357/002224090784984678.
  14. Fingas, M. 2016. Oil Spill Science and Technology. Gulf Professional Publishing, 1,078 pp.
  15. Flores-Melo, X., I.R. Schloss, C. Chavanne, G.O. Almandoz, M. Latorre, and G.A. Ferreyra. 2018. Phytoplankton ecology during a spring-neap tidal cycle in the southern tidal front of San Jorge Gulf, Patagonia. Oceanography 31(4):70–80, https://doi.org/​10.5670/oceanog.2018.412.
  16. Gin, K.Y., M.K. Huda, W.K. Lim, and P. Tkalich. 2001. An oil spill-food chain interaction model for coastal waters. Marine Pollution Bulletin 42(7):590–597, https://doi.org/10.1016/S0025-326X(00)00205-8.
  17. Glembocki, N.G., G.N. Williams, M.E. Góngora, D.A. Gagliardini, and J.M.L. Orensanz. 2015. Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. Journal of Sea Research 95:22–35, https://doi.org/10.1016/​j.seares.2014.10.011.
  18. Glorioso, P.D., and R.A. Flather. 1995. A barotropic model of the currents off SE South America. Journal of Geophysical Research 100(95):427–440, https://doi.org/10.1029/95JC00942.
  19. Glorioso, P.D., and R.A. Flather. 1997. The Patagonian Shelf tides. Progress in Oceanography 40(1–4):263–283, https://doi.org/​10.1016/​S0079-6611(98)00004-4.
  20. Glorioso, P., and J. Simpson. 1994. Numerical modelling of the M2 tide on the northern Patagonian Shelf. Continental Shelf Research 14(2–3):267–278, https://doi.org/10.1016/0278-4343(94)90016-7.
  21. González, J., E. Fernández, F. Figueiras, and M. Varela. 2013. Subtle effects of the water soluble fraction of oil spills on natural phytoplankton assemblages enclosed in mesocosms. Estuarine, Coastal and Shelf Science 124:13–23, https://doi.org/​10.1016/​j.ecss.2013.03.015.
  22. Gordon, D.C., and N.J. Prouse. 1973. The effects of three oils on marine phytoplankton photosynthesis. Marine Biology 22(4):329–333, https://doi.org/​10.1007/BF00391389.
  23. Hassanshahian, M., and S. Cappello. 2013. Crude oil biodegradation in the marine environments. Pp. 101–135 in Biodegradation: Engineering and Technology. R. Chamey, ed., Intech Open, https://doi.org/10.5772/55554.
  24. Hazen, T.C., E.A. Dubinsky, T.Z. DeSantis, G.L. Andersen, Y.M. Piceno, N. Singh, J.K. Jansson, A. Probst, S.E. Borglin, J.L. Fortney, and others. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208, https://doi.org/​10.1126/​science.1195979.
  25. Horel, A., R.J. Bernard, and B. Mortazavi. 2014. Impact of crude oil exposure on nitrogen cycling in a previously impacted Juncus roemerianus salt marsh in the northern Gulf of Mexico. Environmental Science and Pollution Research 21(11):6,982–6,993, https://doi.org/10.1007/s11356-014-2599-z.
  26. Horowitz, A., and R.M. Atlas. 1977. Continuous open flow-through system as a model for oil degradation in the Arctic Ocean. Applied and Environmental Microbiology 33(3):647–653.
  27. Howarth, R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Annual Review of Ecology and Systematics 19:89–110, https://doi.org/​10.1146/​annurev.es.19.110188.000513.
  28. Hsiao, S.I.C. 1976. Biological Productivity of the Southern Beaufort Sea: Phytoplankton and Seaweed Studies. Fisheries and Marine Service, Environment Canada. Beaufort Sea Technical Report 12c, 99 pp.
  29. Hsiao, S.I.C., D.W. Kittle, and M.G. Foy. 1978. Effects of crude oils and the oil dispersant corexit on primary production of arctic marine phytoplankton and seaweed. Environmental Pollution 15(15):209–221, https://doi.org/10.1016/0013-9327(78)90066-6.
  30. Johansson, S. 1978. Impact of oil on the pelagic ecosystem. Pp. 61–80 in The TSESIS Oil Spill. Report of the First Year Scientific Study (October 26, 1977 to December 1978).
  31. King, G., J. Kostka, T. Hazen, and P. Sobecky. 2015. Microbial responses to the Deepwater Horizon oil spill: From coastal wetlands to the deep sea. Annual Review of Marine Science 7(1):377–401, https://doi.org/10.1146/annurev-marine-010814-015543.
  32. Krepper, C.M., and A.L. Rivas. 1979. Análisis de las características oceanográfica de la zona austral de la Plataforma Continental Argentina y aguas adyacentes. Acta Oceanográfica Argentina 2(2):55–82.
  33. Latorre, M.P., I.R. Schloss, G.O. Almandoz, K. Lemarchand, X. Flores-Melo, V. Massé-Beaulne, and G.A. Ferreyra. 2018. Mixing processes at the pycnocline and vertical nitrate supply: Consequences for the microbial food web in San Jorge Gulf, Argentina. Oceanography 31(4):50–59, https://doi.org/10.5670/oceanog.2018.410.
  34. Ministerio de Energía y Minería. 2016. Producción de petróleo en Argentina desde 1950. Tech. rep., Subsecretaría de Escenarios y Evaluación de Proyectos – Secretaría de Planficación Energética Estratégica, https://datos.minem.gob.ar/dataset.
  35. Musser, B.J., and P.K. Kilpatrick. 1998. Molecular characterization of wax isolated from a variety of crude oils. Energy & Fuels 12(4):715–725, https://doi.org/​10.1021/ef970206u.
  36. Nayar, S., B.P.L. Goh, and L.M. Chou. 2005. Environmental impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms. Ecotoxicology 14(3):397–412, https://doi.org/​10.1007/​s10646-004-6373-8.
  37. Palma, E.D., and R.P. Matano. 2012. A numerical study of the Magellan Plume. Journal of Geophysical Research 117(C5), https://doi.org/​10.1029/2011JC007750.
  38. Palma, E.D., R.P. Matano, and A.R. Piola. 2004. A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing. Journal of Geophysical Research 109(C8), https://doi.org/10.1029/2004JC002315.
  39. Petroleum HPV Testing Group. 2011. Crude Oil Category Assessment Document. Technical Report, The American Petroleum Institute, 108 pp.
  40. Potters, G. 2013. Marine Pollution, 1st ed. Bookboon, 231 pp.
  41. Reddy, C.M., J.S. Arey, J.S. Seewald, S.P. Sylva, K.L. Lemkau, R.K. Nelson, C.A. Carmichael, C.P. McIntyre, J. Fenwick, G.T. Ventura, and others. 2012. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109(50):20,229–20,234, https://doi.org/​10.1073/pnas.1101242108.
  42. Reed, M., Ø Johansen, P.J. Brandvik, P. Daling, A. Lewis, R. Fiocco, D. MacKay, and R. Prentki. 1999. Oil spill modeling towards the close of the 20th century: Overview of the state of the art. Spill Science & Technology Bulletin 5(1):3–16, https://doi.org/​10.1016/​S1353-2561(98)00029-2.
  43. Rivas, A.L., A.I. Dogliotti, and D.A. Gagliardini. 2006. Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Continental Shelf Research 26(6):703–720, https://doi.org/​10.1016/j.csr.2006.01.013.
  44. Sargian, P., S. Mas, É. Pelletier, and S. Demers. 2007. Multiple stressors on an Antarctic microplankton assemblage: Water soluble crude oil and enhanced UVBR level at Ushuaia (Argentina). Polar Biology 30(7):829–841, https://doi.org/10.1007/s00300-006-0243-1.
  45. Shiller, A.M., and D. Joung. 2012. Nutrient depletion as a proxy for microbial growth in Deepwater Horizon subsurface oil/gas plumes. Environmental Research Letters 7(4):045301, https://doi.org/​10.1088/​1748-9326/7/4/045301.
  46. Siron, R., E. Pelletier, and S. Roy. 1996. Effects of dispersed and adsorbed crude oil on microalgal and bacterial communities of cold seawater. Ecotoxicology 5(4):229–251, https://doi.org/10.1007/BF00118994.
  47. Teal, J.M., and R.W. Howarth. 1984. Oil spill studies: A review of ecological effects. Environmental Management 8(1):27–43, https://doi.org/10.1007/BF01867871.
  48. Valentine, D.L., I. Mezić, S. Maćešić, N. Črnjarić-Žic, S. Ivić, P.J. Hogan, V.A. Fonoberov, and S. Loire. 2012. Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proceedings of the National Academy of Sciences of the United States of America 109(50):20,286–20,291, https://doi.org/​10.1073/pnas.1108820109.
  49. Yakimov, M.M., K.N. Timmis, and P.N. Golyshin. 2007. Obligate oil-degrading marine bacteria. Current Opinion in Biotechnology 18(3):257–66, https://doi.org/​10.1016/j.copbio.2007.04.006.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.