Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 04

View Issue TOC
Volume 31, No. 4
Pages 25 - 32

OpenAccess

Dynamics of Macronutrients in the San Jorge Gulf During Spring and Summer

By Américo I. Torres , Flavio E. Paparazzo, Gabriela N. Williams, Andrés L. Rivas, Miriam E. Solís, and José L. Esteves 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Following designation of San Jorge Gulf (SJG) as a priority for marine conservation by the Argentine scientific community, it was included in the “Pampa Azul” government initiative. As a contribution to this initiative, we analyzed macronutrient distribution and its relationship to the stratification and primary producer biomass in the water column during austral summer 2014 and spring 2016. In addition, we determined dissolved oxygen, chlorophyll concentrations, and pH. During both seasons in the central and northern gulf, strong stratification separated nutrient-poor, oxygenated surface waters from nutrient-rich, less-oxygenated deep waters. Thermal stratification was correlated to nutrient concentrations. Oxygen decreased up to 60% in bottom waters, although hypoxic conditions were not found. Nitrate limited primary production in surface waters. A tidal front near the gulf’s mouth in the south and wind-forced upwelling in the southwestern coastal zone naturally fertilized the waters. Although there is no information on the precise amount of nutrients each source contributes to the SJG, a shortcut in the path toward resource conservation could be directed through the processes associated with water column stratification because it determines the availability of surface nutrients to primary producers.

Citation

Torres, A.I., F.E. Paparazzo, G.N. Williams, A.L. Rivas, M.E. Solís, and J.L. Esteves. 2018. Dynamics of macronutrients in the San Jorge Gulf during spring and summer. Oceanography 31(4):25–32, https://doi.org/10.5670/oceanog.2018.407.

References
    Acha, E.M., H.W. Mianzan, R.A. Guerrero, M. Favero, and J. Bava. 2004. Marine fronts at the continental shelves of austral South America. Journal of Marine Systems 44(1–2):83–105, https://doi.org/10.1016/​j.jmarsys.2003.09.005.
  1. Akselman, R. 1996. Estudios ecológicos en el Golfo San Jorge y aguas adyacentes (Atlantico Sudoccidental): Distribución, Abundancia y Variación Estacional del Fitoplancton en Relación a Factores Físico-Químicos y la Dinámica Hidrológica. PhD Disertación, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina, 234 pp.
  2. Bovcon, N.D., M.E. Góngora, C. Marinao, and D. González-Zevallos. 2013. Composición de las capturas y descartes generados en la pesca de merluza común Merluccius hubbsi y langostino patagónico Pleoticus muelleri: Un caso de estudio en la flota fresquera de altura del Golfo San Jorge, Chubut, Argentina. Revista de Biologia Marina y Oceanografia 48(2):303–319, https://doi.org/​10.4067/S0718-19572013000200010.
  3. Carbajal, J.C., A.L. Rivas, and C. Chavanne. 2018. High-frequency frontal displacements south of San Jorge Gulf during a tidal cycle near spring and neap phases: Biological implications between tidal states. Oceanography 31(4):60–69, https://doi.org/​10.5670/oceanog.2018.411.
  4. Carreto, J.I., M.O. Carignan, N.G. Montoya, and D.A. Cucchi Colleoni. 2007. El Mar Argentino y sus recursos Pesqueros V: El ambiente marino. Pp. 11–31 in El Mar Argentino y Sus Recursos Pesqueros V: El Ambiente Marino. J. I. Carreto, and C. Bremec, and E. Boschi, eds, INIDEP, Mar del Plata, Buenos Aires.
  5. Commendatore, M., J.L. Esteves, and J.C. Colombo. 2000. Hydrocarbons in coastal sediments of Patagonia, Argentina: Levels and probable sources. Marine Pollution Bulletin 11(11):989–998, https://doi.org/10.1016/S0025-326X(00)00042-4.
  6. Cordo, H. 2006. Evaluación del Efectivo sur de 41° de la Merluza (Merluccius Hubbsi) y Estimación de la Captura Biológicamente Aceptable Correspondiente al Año 2006. Mar del Plata, Buenos Aires, 27 pp.
  7. Cucchi Colleoni, A.D., and J.I. Carreto. 2001. Variación Estacional de La Biomasa Fitoplanctónica en el Golfo San Jorge: Resultados de las Campañas de Investigación OB-01/00, OB-03/00, OB-10/00, Y OB-12/00. Informe Técnico Interno N° 49, INIDEP, Mar del Plata, Buenos Aires, 30 pp.
  8. Demaison, G.J., and G.T. Moore. 1980. Anoxic environment and oil source bed genesis. Organic Geochemistry 2(8):9–31, https://doi.org/​10.1016​/0146-6380(80)90017-0.
  9. Desiage, P.-A., J.-C. Montero-Serrano, G. St-Onge, A.C. Crespi-Abril, E. Giarratano, M.N. Gil, and M.J. Haller. 2018. Quantifying sources and transport pathways of surface sediments in the Gulf of San Jorge, central Patagonia (Argentina). Oceanography 31(4):92–103, https://doi.org/10.5670/oceanog.2018.401.
  10. Fanjul, E., M.A. Grela, and O. Iribarne. 2007. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution. Marine Ecology Progress Series 341(Alongi 1998):177–190, https://doi.org/10.3354/meps341177.
  11. Farías, L. 1994. Remineralizacion y acumulación de mateira orgánica en sedimentos marinos recientes-​Bahía Concepción, Chile. Pp. 273–280 in 7° Congreso Geológico Chileno, vol. I.
  12. Fernández, M., J. Carreto, J. Mora, and A. Roux. 2005. Physico-chemical characterization of the benthic environment of the Golfo San Jorge. Argentina. Journal of the Marine Biological Association of the United Kingdom 85(4634):1–12, https://doi.org/​10.1017/S002531540501249X.
  13. Fernández, M., D. Cucchi Colleoni, A. Roux, Á. Marcos, and E. Fernández. 2007. Caracterización físico-química del sistema bentónico en el sector sur del Golfo San Jorge, Argentina. Revista de Biología Marina y Oceanografía 42(2):177–192, https://doi.org/​10.4067/S0718-19572007000200005.
  14. Garcia-Solsona, E., J. Garcia-Orellana, P. Masqué, E. Garcés, O. Radakovitch, A. Mayer, S. Estradé, and G. Basterretxea. 2010. An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry 97:211–229, https://doi.org/​10.1007/​s10533-009-9368-y.
  15. Garcia, V.M.T., C.A.E. Garcia, M.M. Mata, R.C. Pollery, A.R. Piola, S.R. Signorini, C.R. McClain, and M.D. Iglesias-Rodriguez. 2008. Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep Sea Research Part I 55(9):1,150–1,166, https://doi.org/​10.1016/​j.dsr.2008.04.011.
  16. Gil, M.N., A.I. Torres, O. Amin, and J.L. Esteves. 2011. Assessment of recent sediment influence in an urban polluted subantarctic coastal ecosystem: Beagle Channel (Southern Argentina). Marine Pollution Bulletin 62(1):201–207, https://doi.org/​10.1016/​j.marpolbul.2010.10.004.
  17. Gil, M.N., A.I. Torres, C.H. Marinho, and J.L. Esteves. 2014. Caracterización de sedimentos costeros y flujos bentónicos en una Bahía Patagónica de Argentina antes y despues de la eliminación del efluente urbano. Pp. 37–51 in Procesos Químicos Superficiales en Iberoamérica, Primera. J.E. Marcovecchio, S.E. Botté, and R.H. Freije, eds, Red Iberoamericana de Física y Química Ambiental, Bahía Blanca, Buenos Aires.
  18. Glembocki, N.G., G.N. Williams, M.E. Góngora, D.A. Gagliardini, and J.M. (Lobo) Orensanz. 2015. Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. Journal of Sea Research 95:22–35, https://doi.org/10.1016/​j.seares.2014.10.011.
  19. Godoy, J.M., T.A. Souza, M.L.D.P. Godoy, I. Moreira, Z.L. Carvalho, L.D. Lacerda, and F.C. Fernandes. 2013. Groundwater and surface water quality in a coastal bay with negligible fresh groundwater discharge: Arraial do Cabo, Brazil. Marine Chemistry (156):85–97, https://doi.org/10.1016/​j.marchem.2013.05.004.
  20. Góngora, M.E. 2011. Dinámica y Manejo de la Captura Incidental de Peces en el Pesquería de Langostino Patagónico (Pleoticus muelleri). PhD Disertación, Universidad Nacional del Comahue, Río Negro, Argentina, 214 pp.
  21. Góngora, M.E., D. Gonzalez Zevallos, A. Pettovello, and L. Mendia. 2012. Caracterizacion de las principales pesquerias del golfo San Jorge Patagonia, Argentina. Latin American Journal of Aquatic Research (40):1–11, https://doi.org/10.3856/vol40-issue1-fulltext-1.
  22. Grenz, C., L. Denis, O. Pringault, and R. Fichez. 2010. Spatial and seasonal variability of sediment oxygen consumption and nutrient fluxes at the sediment water interface in a sub-tropical lagoon (New Caledonia). Marine Pollution Bulletin 61(7–12):399–412, https://doi.org/10.1016/​j.marpolbul.2010.06.014.
  23. Krock, B., C.M. Borel, F. Barrera, U. Tillmann, E. Fabro, G.O. Almandoz, M. Ferrario, J.E. Garzón Cardona, B.P. Koch, C. Alonso, and R. Lara. 2015. Analysis of the hydrographic conditions and cyst beds in the San Jorge Gulf, Argentina, that favor dinoflagellate population development including toxigenic species and their toxins. Journal of Marine Systems 148:86–100, https://doi.org/10.1016/​j.jmarsys.2015.01.006.
  24. Kroeger, K.D., and M.A. Charette. 2008. Nitrogen biogeochemistry of submarine groundwater discharge. Limnology and Oceanography 53(3):1,025–1,039, https://doi.org/​10.4319/lo.2008.53.3.1025.
  25. Latorre, M.P., I.R. Schloss, G.O. Almandoz, K. Lemarchand, X. Flores-Melo, V. Massé-Beaulne, and G.A. Ferreyra. 2018. Mixing processes at the pycnocline and vertical nitrate supply: Consequences for the microbial food web in San Jorge Gulf, Argentina. Oceanography 31(4):50–59, https://doi.org/​10.5670/oceanog.2018.410.
  26. Lee, P.Z., A. Weidemann, J. Kindle, R. Arnone, K.L. Carder, and C. Davis. 2007. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. Journal of Geophysical Research 112, C03009, https://doi.org/​10.1029/​2006JC003802.
  27. Lutz, V.A., V. Segura, A.I. Dogliotti, D.A. Gagliardini, A.A. Bianchi, and C.F. Balestrini. 2009. Primary production in the Argentine Sea during spring estimated by field and satellite models. Journal of Plankton Research 32(2):181–195, https://doi.org/​10.1093/plankt/fbp117.
  28. Moore, W.S. 2006. Radium isotopes as tracers of submarine groundwater discharge in Sicily. Continental Shelf Research 26:852–861, https://doi.org/​10.1016/​j.csr.2005.12.004.
  29. Moore, W.S. 2010. A reevaluation of submarine groundwater discharge along the southeastern coast of North America. Global Biogeochemical Cycles 24, GB4005, https://doi.org/​10.1029/​2009GB003747.
  30. Niencheski, L.F., and R.A. Jahnke. 2002. Benthic respiration and inorganic nutrient fluxes in the estuarine region of Patos Lagoon (Brazil). Aquatic Geochemistry 8(3):135–152, https://doi.org/​10.1023/​A:1024207220266.
  31. Paparazzo, F.E., A.C. Crespi-Abril, R.J. Gonçalves, E.S. Barbieri, L.L. Gracia Villalobos, M.E. Solís, and G. Soria. 2018. Patagonian dust as a source of macronutrients in the Southwest Atlantic Ocean. Oceanography 31(4):33–39, https://doi.org/10.5670/oceanog.2018.408.
  32. Paparazzo, F.E., L. Bianucci, I.R. Schloss, G.O. Almandoz, M. Solís, and J.L. Esteves. 2010. Cross-frontal distribution of inorganic nutrients and chlorophyll-a on the Patagonian continental shelf of Argentina during summer and fall. Revista de Biología Marina y Oceanografía 45(1):107–119, https://doi.org/10.4067/S0718-19572010000100010.
  33. Paparazzo, F.E., G.N. Williams, J.P. Pisoni, M. Solís, J.L. Esteves, and D.E. Varela. 2017. Linking phytoplankton nitrogen uptake, macronutrients and chlorophyll-a in SW Atlantic waters: The case of the Gulf of San Jorge, Argentina. Journal of Marine Systems (172):43–50, https://doi.org/10.1016/​j.jmarsys.2017.02.007.
  34. Parada, I.L. 2008. Caleta Córdova: Impactos en un área importante para las aves. Aves Argentinas 22:22–25.
  35. Poleschi, C., J. Andrejuk, G. Caille, and R.D. Schenke. 2008. Informe de las Acciones Desarrolladas en el Centro de Rescate de Aves Empetroladas Durante el Derrame de Hidrocarburos Ocurrido en las Costas de Caleta Córdova, Golfo San Jorge, Chubut, Argentina: Diciembre 2007–Marzo 2008. Fundación Patagonia Natural, 35 pp.
  36. Rivas, A.L., A.I. Dogliotti, and D.A. Gagliardini. 2006. Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Continental Shelf Research 26(6):703–720, https://doi.org/​10.1016/​j.csr.2006.01.013.
  37. Rivas, A.L., and J.P. Pisoni. 2010. Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf. Journal of Marine Systems 79(1–2):134–143, https://doi.org/10.1016/j.jmarsys.2009.07.008.
  38. Romero, S.I., A.R. Piola, M. Charo, and C.A. Eiras Garcia. 2006. Chlorophyll-a variability off Patagonia based on SeaWiFS data. Journal of Geophysical Research 111, C05021, https://doi.org/​10.1029/​2005JC003244.
  39. Sakamaki, T., O. Nishimura, and R. Sudo. 2006. Tidal time-scale variation in nutrient flux across the sediment-water interface of an estuarine tidal flat. Estuarine, Coastal and Shelf Science 67(4):653–663, https://doi.org/10.1016/​j.ecss.2006.01.005.
  40. Simonella, L.E., M.E. Palomeque, P.L. Croot, A. Stein, M. Kupczewski, A. Rosales, M.L. Montes, F. Colombo, M.G. García, G. Villarosa, and D.M. Gaiero. 2015. Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes. Global Biogeochemical Cycles 29(8):1,125–1,144, https://doi.org/​10.1002/​2015GB005177.
  41. Skalar Analytical® V.B, 2005a. Skalar Methods - Analysis: Nitrate + Nitrite - Catnr. 461-031 + DIAMOND Issue 081505/MH/99235956. Breda, The Netherlands.
  42. Skalar Analytical® V.B, 2005b. Skalar Methods - Analysis: Phosphate - Catnr. 503-010w/r + DIAMOND Issue 081505/MH/99235956. Breda, The Netherlands.
  43. Skalar Analytical® V.B, 2005c. Skalar Methods - Analysis: Silicate -Catnr. 563-051 + DIAMOND Issue 081505/MH/99235956. Breda, The Netherlands.
  44. Strickland, J.D.H., and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd ed. Fishery Research Board of Canada, Ottawa, 310 pp.
  45. Swarzenski, P.W., W.C. Burnett, W.J. Greenwood, B. Herut, R. Peterson, N. Dimova, Y. Shalem, Y. Yechieli, and Y. Weinstein. 2006. Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel. Geophysical Research Letters 33, L24405, https://doi.org/​10.1029/​2006GL028282.
  46. Torres, A.I., C.F. Andrade, W.S. Moore, M. Faleschini, J.L. Esteves, L.F.H. Niencheski, and P.J. Depetris. 2018. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in the patagonian coastal zone (Argentina): An initial assessment. Environmental Earth Sciences 77(4):145, https://doi.org/​10.1007/s12665-018-7308-7.
  47. Torres, A.I., M. Faleschini, and J.L. Esteves. 2016. Benthic fluxes and nitrate reduction activity in a marine park (Northern San Jorge Gulf) from Patagonia Argentina. Environmental Earth Sciences 75(9):815, https://doi.org/10.1007/s12665-016-5628-z.
  48. Torres, A.I., M.N. Gil, O.A. Amín, and J.L. Esteves. 2009. Environmental characterization of a eutrophicated semi-enclosed system: Nutrient budget (Encerrada Bay, Tierra del Fuego island, Patagonia, Argentina). Water, Air, and Soil Pollution 204(1–4):259–270, https://doi.org/10.1007/s11270-009-0042-8.
  49. Varisco, M., J.H. Vinuesa, and M.E. Góngora. 2015. Bycatch of the squat lobster Munida gregaria in bottom trawl fisheries in San Jorge Gulf, Argentina. Revista de Biología Marina y Oceanografía 50(2):249–259, https://doi.org/​10.4067/S0718-19572015000300004.
  50. Yorio, P. 2001. Antecedentes para la Creación de un Nuevo Área Marina Protegida en la Provincia de Chubut: El norte del Golfo San Jorge. Documento Técnico, Centro Nacional Patagónico CONICET, 27 pp.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.