Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 04

View Issue TOC
Volume 31, No. 4
Pages 122 - 131

Distribution of Modern Dinoflagellate Cyst Assemblages in Surface Sediments of San Jorge Gulf (Patagonia, Argentina)

Simon Faye André RochonGuillaume St-Onge
Article Abstract

The presence of upwelling systems and oceanic fronts makes the Southwest Atlantic Ocean a region of high primary productivity. These same conditions are present in San Jorge Gulf (SJG) along the southern Argentinian coast, where dinoflagellates and diatoms dominate primary production. The distribution of these microorganisms, including the cysts produced by some dinoflagellates during their life cycles, is controlled in marine environments by oceanographic parameters that include salinity, surface water temperature, ice cover duration, and productivity. The objective of this study is to document the modern distribution of dinoflagellate cyst assemblages in surface sediments so that the environmental preferences of each taxon can be inferred and used to reconstruct paleoenvironmental conditions. The dinoflagellate cyst (dinocyst) assemblages of 52 surface samples collected in 2014 aboard R/V Coriolis II in the SJG were described and compared to surface oceanographic conditions and grain size data. The results indicate dinocyst concentrations vary between 64 cysts g–1 and 45,848 cysts g–1 dry sediment, with Spiniferites ramosus and Operculodinium centrocarpum the dominant species, accompanied by Spiniferites mirabilis, Dubridinium sp., cysts of Polykrikos kofoidii, and cysts of Brigantedinium simplex, Brigantedinium auranteum, and Brigantedinium spp. We have defined two spatial domains based on the distribution of dinocysts in and near the SJG: northern/southern-central gulf and offshore domains. We found an increase in dinocyst concentrations along a north-south gradient in the SJG and minimum concentrations at offshore sites. In addition, multivariate analyses reveal the relationships among the relative abundances of dinocysts, fine grain size data (<63 μm; silts and clays), and primary productivity, as well as offshore upwelling, which appear to control most of the distribution of dinocysts.


Faye, S., A. Rochon, and G. St-Onge. 2018. Distribution of modern dinoflagellate cyst assemblages in surface sediments of San Jorge Gulf (Patagonia, Argentina). Oceanography 31(4):122–131, https://doi.org/10.5670/oceanog.2018.416.

Supplementary Materials

Aravena, J-C., and B.H. Luckman. 2009. Spatio-temporal rainfall patterns in Southern South America. International Journal of Climatology 29(14):2,106–2,120, https://doi.org/​10.1002/joc.1761.

Bianchi, A.A. 2005. Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf. Journal of Geophysical Research 110(C7), https://doi.org/​10.1029/2004JC002488.

Bogus, K., K.N. Mertens, J. Lauwaert, I.C. Harding, H. Vrielinck, K.A. Zonneveld, and G.J. Versteegh. 2014. Differences in the chemical composition of organic-walled dinoflagellate resting cysts from phototrophic and heterotrophic dinoflagellates. Journal of Phycology 50(2):254–266, https://doi.org/​10.1111/jpy.12170.

Brandhorst, W., and J.P. Castello. 1971. Evaluación de los Recursos de Anchoíta (Engraulis anchoita) frente a la Argentina y Uruguay. Serie de Informaciones Técnicas 29, Proy. Des. Pesquero (FAO), 63 pp.

Bujak, J.P. 1984. Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and northern North Pacific, DSDP Leg 19. Micropaleontology 30(2):180–212.

Candel, M.S., T. Radi, A. de Vernal, and G. Bujalesky. 2012. Distribution of dinoflagellate cysts and other aquatic palynomorphs in surface sediments from the Beagle Channel, Southern Argentina. Marine Micropaleontology 96–97:1–12, https://doi.org/​10.1016/j.marmicro.2012.06.009.

Carbajal, J.C., A.L. Rivas, and C. Chavanne. 2018. High-frequency frontal displacements south of San Jorge Gulf during a tidal cycle near spring and neap phases: Biological implications between tidal states. Oceanography 31(4):60–69, https://doi.org/​10.5670/oceanog.2018.411.

Dale, B. 1976. Cyst formation, sedimentation, and preservation: Factors affecting dinoflagellate assemblages in recent sediments from Trondheimsfjord, Norway. Review of Palaeobotany and Palynology 22(1):39–60, https://doi.org/​10.1016/0034-6667(76)90010-5.

Dale, B. 2001. Marine dinoflagellate cysts as indicators of eutrophication and industrial pollution: A discussion. Science of the Total Environment 264(3):235–240, https://doi.org/​10.1016/S0048-9697(00)00719-1.

Desiage, P.-A., J.-C. Montero-Serrano, G. St-Onge, A.C. Crespi-Abril, E. Giarratano, M.N. Gil, and M.J. Haller. 2018. Quantifying sources and transport pathways of surface sediments in the Gulf of San Jorge, central Patagonia (Argentina). Oceanography 31(4):92–103, https://doi.org/10.5670/oceanog.2018.401.

Desiage, P-A., G. St-Onge, J-C. Montero-Serrano, M.J. Duchesne, and M. Haller. 2016. Late Pleistocene and Holocene sea-level variations and post-glacial sedimentation in the Gulf of San Jorge (Argentina, Central Patagonia). Poster session presented at the Fall Meeting of the American Geophysical Union.

de Vernal, A., A. Rochon, B. Fréchette, M. Henry, T. Radi, and S. Solignac. 2013. Reconstructing past sea ice cover of the Northern Hemisphere from dinocyst assemblages: Status of the approach. Quaternary Science Reviews 79:122–134, https://doi.org/10.1016/j.quascirev.2013.06.022.

Dugdale, R.C., and F.P. Wilkerson. 2001. Sources and fates of silicon in the ocean: The role of diatoms in the climate and glacial cycles. Scientia Marina 65(S2):141–152, https://doi.org/10.3989/scimar.2001.65s2141.

Durantou, L., A. Rochon, D. Ledu, G. Massé, S. Schmidt, and M. Babin. 2012. Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: The role of large-scale atmospheric circulation patterns. Biogeosciences 9(12):5,391–5,406, https://doi.org/​10.5194/bg-9-5391-2012.

Esper, O., and K.A.F. Zonneveld. 2002. Distribution of organic-walled dinoflagellate cysts in surface sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the Weddell Gyre. Marine Micropaleontology 46(1):177–208, https://doi.org/10.1016/S0377-8398(02)00041-5.

Evitt, W.R. 1985. Sporopollenin Dinoflagellate Cysts: Their Morphology and Interpretation. American Association of Stratigraphic Palynologists Foundation, Dallas, 333 pp.

Fabro, E., G.O. Almandoz, M. Ferrario, U. John, U. Tillmann, K. Toebe, B. Krock, and A. Cembella. 2017. Morphological, molecular, and toxin analysis of field populations of Alexandrium genus from the Argentine Sea. Journal of Phycology 53(6):1,206–1,222, https://doi.org/10.1111/jpy.12574.

Fabro, E., B. Krock, A.I. Torres, F.E. Paparazzo, I.R. Schloss, G.A. Ferreyra, and G.O. Almandoz. 2018. Toxigenic dinoflagellates and associated toxins in San Jorge Gulf, Argentina. Oceanography 31(4):145–153, https://doi.org/10.5670/oceanog.2018.417.

Fernández, M., A. Roux, E. Fernández, J. Caló, A. Marcos, and H. Aldacur. 2003. Grain-size analysis of surficial sediments from Golfo San Jorge, Argentina. Journal of the Marine Biological Association of the United Kingdom 83(6):1,193–1,197, https://doi.org/10.1017/S0025315403008488.

Glembocki, N.G., G.N. Williams, M.E. Góngora, D.A. Gagliardini, and J.M. (Lobo) Orensanz. 2015. Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. Journal of Sea Research 95:22–35, https://doi.org/10.1016/​j.seares.2014.10.011.

Gregg, W.W. 2005. Recent trends in global ocean chlorophyll. Geophysical Research Letters 32(3), https://doi.org/10.1029/2004GL021808.

Gurdebeke, P.R., K.N. Mertens, Y. Takano, A. Yamaguchi, K. Bogus, M. Dunthom, K. Matsuoka, H. Vrielinck, and S. Louwye. 2018. The affiliation of Hexasterias problematica and Halodinium verrucatum sp. nov. to ciliate cysts based on molecular phylogeny and cyst wall composition. European Journal of Protistology 66:115–135, https://doi.org/​10.1016/j.ejop.2018.09.002.

Hansen, P.J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Marine Biology 114(2):327–334, https://doi.org/​10.1007/BF00349535.

Head, M.J. 1996. Modern dinoflagellate cysts and their biological affinities. Pp. 1,197–1,248 in Palynology Principles and Applications, vol. 3. J. Jansonius and D.C. McGregor, eds, American Association of Stratigraphic Palynologists Foundation, Dallas, TX.

Head, M.J., J. Lewis, and A. de Vernal. 2006. The cyst of the calcareous dinoflagellate Scrippsiella trifida: Resolving the fossil record of its organic wall with that of Alexandrium tamarense. Journal of Paleontology 80(1):1–18, https://doi.org/10.1666/0022-3360​(2006)​080​[0001:TCOTCD]2.0.CO;2.

Jacobson, D.M., and D.M. Anderson. 1986. Thecate heterophic dinoflagellates: Feeding behavior and mechanisms. Journal of Phycology 22(3):249–258, https://doi.org/10.1111/j.1529-8817.1986.tb00021.x.

Jeong, H.J., Y.D. Yoo, J.S. Kim, K.A. Seong, N.S. Kang, and T.H. Kim. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45(2):65–91, https://doi.org/​10.1007/s12601-010-0007-2.

Krock, B., C.M. Borel, F. Barrera, U. Tillmann, E. Fabro, G.O. Almandoz, M. Ferrario, J.E. Garzón Cardona, B.P. Koch, C. Alonso, and R. Lara. 2015. Analysis of the hydrographic conditions and cyst beds in the San Jorge Gulf, Argentina, that favor dinoflagellate population development including toxigenic species and their toxins. Journal of Marine Systems 148:86–100, https://doi.org/10.1016/​j.jmarsys.2015.01.006.

Krock, B., M.E. Ferrario, R. Akselman, and N.G. Montoya. 2018. Occurrence of marine biotoxins and shellfish poisoning events and their causative organisms in Argentine marine waters. Oceanography 31(4):132–144, https://doi.org/10.5670/oceanog.2018.403.

Latorre, M.P. 2018. Contrôle de la Structure et de la Distribution de la Communauté Microbienne dans le Golfe de San Jorge, Argentine. Maîtrise, Université du Québec à Rimouski, 104 pp.

Legendre, P., and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129(2):271–280, https://doi.org/​10.1007/s004420100716.

Lutz, V.A., and J. Carreto. 1991. A new spectrofluorometric method for the determination of chlorophylls and degradation products and its application in two frontal areas of the Argentine Sea. Continental Shelf Research 11:433–451, https://doi.org/​10.1016/​0278-4343(91)90052-8.

Matano, R.P., and E.D. Palma. 2018. Seasonal variability of the oceanic circulation in the Gulf of San Jorge, Argentina. Oceanography 31(4):16–24, https://doi.org/​10.5670/oceanog.2018.402.

Matano, R.P., E.D. Palma, and A.R. Piola. 2010. The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf circulation. Ocean Science 6(4):983–995, https://doi.org/10.5194/os-6-983-2010.

Matsuoka, K., H.J. Cho, and D.M. Jacobson. 2000. Observations of the feeding behavior and growth rates of the heterotrophic dinoflagellate Polykrikos kofoidii (Polykrikaceae, Dinophyceae). Phycologia 39(1):82–86, https://doi.org/10.2216/i0031-8884-39-1-82.1.

Mayr, C., M. Wille, T. Haberzettl, M. Fey, S. Janssen, A. Lucke, C. Ohlendorf, G. Oliva, F. Schabitz, and G. Schleser. 2007. Holocene variability of the Southern Hemisphere westerlies in Argentinean Patagonia (52°S). Quaternary Science Reviews 26(5–6):579–584, https://doi.org/10.1016/​j.quascirev.2006.11.013.

Orozco, F.E., and J.I. Carreto. 1989. Distribution of Alexandrium excavatum resting cysts in a patagonic shelf area (Argentina). Pp. 309–312 in Red Tides: Biology, Environmental Science and Toxicology. T. Okaichi, D.M. Anderson, and T. Nemoro, eds, Elsevier Science Publishing.

Palma, E.D., R.P. Matano, and A.R. Piola. 2008. A numerical study of the Southwestern Atlantic Shelf circulation: Stratified ocean response to local and offshore forcing. Journal of Geophysical Research 113(C11), https://doi.org/​10.1029/​2007JC004720.

Piola, A.R., N.M. Avellaneda, R.A. Guerrero, F.P. Jardón, E.D. Palma, and S.I. Romero. 2009. Malvinas-slope water intrusions on the northern Patagonia continental shelf. Ocean Science Discussions 6(4):345–359, https://doi.org/10.5194/os-6-345-2010.

Pospelova, V., A. de Vernal, and T.F. Pedersen. 2008. Distribution of dinoflagellate cysts in surface sediments from the northeastern Pacific Ocean (43–25°N) in relation to sea-surface temperature, salinity, productivity and coastal upwelling. Marine Micropaleontology 68(1–2):21–48, https://doi.org/​10.1016/j.marmicro.2008.01.008.

Rivas, A.L., A.I. Dogliotti, and D.A. Gagliardini. 2006. Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Continental Shelf Research 26(6):703–720, https://doi.org/​10.1016/j.csr.2006.01.013.

Rochon, A., A.D. Vernal, J.L. Turon, J. Matthiessen, and M.J. Head. 1999. Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. American Association of Stratigraphic Palynologists Contribution Series 35:1–146.

Sabatini, M., and P. Martos. 2002. Mesozooplankton features in a frontal area off northern Patagonia (Argentina) during spring 1995 and 1998. Scientia Marina 66:215–232, https://doi.org/10.3989/scimar.2002.66n3215.

Segura, V., V. Lutz, A. Dogliotti, R. Silva, R. Negri, R. Akselman, and H. Benavides. 2013. Phytoplankton types and primary production in the Argentine Sea. Marine Ecology Progress Series 491:15–31, https://doi.org/10.3354/meps10461.

Smayda, T.J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. Pp. 29–40 in Toxic Marine Phytoplankton. E. Granéli, B. Sundström, L. Edler, and D.M. Anderson, eds, Elsevier.

Smayda, T.J. 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography 42(5, part2):1,137–1,153, https://doi.org/​10.4319/lo.1997.42.5_part_2.1137.

Stoecker, D.K. 1999. Mixotrophy among dinoflagellates. Journal of Eukaryotic Microbiology 46(4):397–401, https://doi.org/​10.1111/j.1550-7408.1999.tb04619.x.

Taylor, F.J.R., M. Hoppenrath, and J.F. Saldarriaga. 2008. Dinoflagellate diversity and distribution. Biodiversity and Conservation 17(2):407–418, https://doi.org/10.1007/s10531-007-9258-3.

Tonini, M.H., E.D. Palma, and A. Rivas. 2006. Modelo de alta resolución de los golfos norpatagónicos. Mecánica Computacional XXV:1,441–1,460.

Versteegh, G.J.M., P. Blokker, K.A. Bogus, I.C. Harding, J. Lewis, S. Oltmanns, A. Rochon, and K.A.F. Zonneveld. 2012. Infra red spectroscopy, flash pyrolysis, thermally assisted hydrolysis and methylation (THM) in the presence of tetramethylammonium hydroxide (TMAH) of cultured and sediment-derived Lingulodinium polyedrum (Dinoflagellata) cyst walls. Organic Geochemistry 43:92–102, https://doi.org/10.1016/​j.orggeochem.2011.10.007.

Wall, D., B. Dale, G.P. Lohmann, and W.K. Smith. 1977. The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Ocean and adjacent seas. Marine Micropaleontolology 2:121–200, https://doi.org/​10.1016/0377-8398(77)90008-1.

Zonneveld, K.A., R.P. Hoek, H. Brinkhuis, and H. Willems. 2001b. Geographical distributions of organic-walled dinoflagellate cysts in surficial sediments of the Benguela upwelling region and their relationship to upper ocean conditions. Progress in Oceanography 48(1):25–72, https://doi.org/10.1016/S0079-6611(00)00047-1.

Zonneveld, K.A.F., F. Marret, G.J.M. Versteegh, K. Bogus, S. Bonnet, I. Bouimetarhan, E. Crouch, A. de Vernal, R. Elshanawany, L. Edwards, and others. 2013. Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Review of Palaeobotany and Palynology 191:1–197, https://doi.org/​10.1016/j.revpalbo.2012.08.003.

Zonneveld, K.A.F., G.J.M. Versteegh, and G.J. De Lange. 2001a. Palaeoproductivity and post-​depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean S1 sapropel. Marine Geology 172(3):181–195, https://doi.org/10.1016/S0025-3227(00)00134-1.