Oceanography The Official Magazine of
The Oceanography Society
Volume 28 Issue 02

View Issue TOC
Volume 28, No. 2
Pages 160 - 169

OpenAccess

Core Principles of the California Current Acidification Network: Linking Chemistry, Physics, and Ecological Effects

By Karen McLaughlin , Stephen B. Weisberg, Andrew G. Dickson, Gretchen E. Hofmann , Jan A. Newton, Deborah Aseltine-Neilson, Alan Barton , Sue Cudd , Richard A. Feely , Ian W. Jefferds , Elizabeth B. Jewett , Teri King , Chris J. Langdon, Skyli McAfee, Diane Pleschner-Steele, and Bruce Steele 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Numerous monitoring efforts are underway to improve understanding of ocean acidification and its impacts on coastal environments, but there is a need to develop a coordinated approach that facilitates spatial and temporal comparisons of drivers and responses on a regional scale. Toward that goal, the California Current Acidification Network (C-CAN) held a series of workshops to develop a set of core principles for facilitating integration of ocean acidification monitoring efforts on the US West Coast. The recommended core principles include: (1) monitoring measurements should facilitate determination of aragonite saturation state (Ωarag) as the common currency of comparison, allowing a complete description of the inorganic carbon system; (2) maximum uncertainty of ±0.2 in the calculation of Ωarag is required to adequately link changes in ocean chemistry to changes in ecosystem function; (3) inclusion of a variety of monitoring platforms and levels of effort in the network will insure collection of high-frequency temporal data at fixed locations as well as spatial mapping across locations; (4) physical and chemical oceanographic monitoring should be linked with biological monitoring; and (5) the monitoring network should share data and make it accessible to a broad audience.

Citation

McLaughlin, K., S.B. Weisberg, A.G. Dickson, G.E. Hofmann, J.A. Newton, D. Aseltine-Neilson, A. Barton, S. Cudd, R.A. Feely, I.W. Jefferds, E.B. Jewett, T. King, C.J. Langdon, S. McAfee, D. Pleschner-Steele, and B. Steele. 2015. Core principles of the California Current Acidification Network: Linking chemistry, physics, and ecological effects. Oceanography 28(2):160–169, https://doi.org/10.5670/oceanog.2015.39.

References
    Alin, S.R., R.E. Brainard, N.N. Price, J.A. Newton, A. Cohen, W.T. Peterson, E.H. DeCarlo, E.H. Shadwick, S. Noakes, and N. Bednaršek. 2015. Characterizing the natural system: Toward sustained, integrated coastal ocean acidification observing networks to facilitate resource management and decision support. Oceanography 28(2):92–107, https://doi.org/10.5670/oceanog.2015.34.
  1. Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57:698–710, https://doi.org/10.4319/lo.2012.57.3.0698.
  2. Barton, A., G.G. Waldbusser, R.A. Feely, S.B. Weisberg, J.A. Newton, B. Hales, S. Cudd, B. Eudeline, C.J. Langdon, I. Jefferds, and others. 2015. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28(2):146–159, https://doi.org/10.5670/oceanog.2015.38.
  3. Bockmon, E.E., and A.G. Dickson. 2015. An inter-laboratory comparison assessing the quality of seawater carbon dioxide measurements. Marine Chemistry 171:36–43, https://doi.org/10.1016/j.marchem.2015.02.002.
  4. Borges, A.V., and N. Gypens. 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnology and Oceanography 55:346–353, https://doi.org/10.4319/lo.2010.55.1.0346.
  5. Breitburg, D.L., J. Salisbury, J.M. Bernhard, W.-J. Cai, S. Dupont, S.C. Doney, K.J. Kroeker, L.A. Levin, W.C. Long, L.M. Milke, and others. 2015. And on top of all that… Coping with ocean acidification in the midst of many stressors. Oceanography 28(2):48–61, https://doi.org/10.5670/oceanog.2015.31.
  6. Bresnahan, P., T.R. Martz, Y. Takeshita, K.S. Johnson, and M. LaShomb. 2014. Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in Oceanography 9:44–60, https://doi.org/10.1016/j.mio.2014.08.003.
  7. Cooley, S.R., H.L. Kite-Powell, and S.C. Doney. 2009. Ocean acidification’s potential to alter global marine ecosystem services. Oceanography 22(4):172–181, https://doi.org/10.5670/oceanog.2009.106.
  8. Dawson, T.P., S.T. Jackson, J.I. House, I.C. Prentice, and G.M. Mace. 2011. Beyond predictions: Biodiversity conservation in a changing climate. Science 332:53–58, https://doi.org/10.1126/science.1200303.
  9. De Bièvre, P. 2008. Measurement uncertainty is not synonym of measurement repeatability or measurement reproducibility… Accreditation and Quality Assurance 13:61–62, https://doi.org/10.1007/s00769-008-0371-0.
  10. Dickson, A.G. 1990. Standard potential of the reaction AgCl(s) + .5H2(g) = Ag(s) + HCl(aq) and the standard acidity constant of the ion HSO4– in synthetic sea water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics 22:13–127, https://doi.org/10.1016/0021-9614(90)90074-z.
  11. Dickson, A.G. 2010. The carbon dioxide system in seawater: Equilibrium chemistry and measurements. Pp. 17–40 in Guide to Best Practices for Ocean Acidification Research and Data Reporting. U. Riebesell, V.J. Fabry, L. Hansson, and J.-P. Gattuso, eds, Publications Office of the European Union, Luxembourg, http://www.iaea.org/ocean-acidification/download/7_Best practices/OA_guide_20110726.pdf.
  12. Dickson, A.G., and J.P. Riley. 1978. The effect of analytical error on the evaluation of the components of the aquatic carbon-dioxide system. Marine Chemistry 8:77–85, https://doi.org/10.1016/0304-4203(78)90008-7.
  13. Dickson, A.G., C.L. Sabine, and J.R. Christian, eds. 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, 191 pp.
  14. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–192, https://doi.org/10.1146/annurev.marine.010908.163834.
  15. Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36:221–236, https://doi.org/10.1007/s12237-013-9594-3.
  16. Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65:414–432, https://doi.org/10.1093/icesjms/fsn048.
  17. Feely, R.A., V.J. Fabry, A.G. Dickson, J.P. Gattuso, J. Bijma, U. Riebesell, S. Doney, C. Turley, T. Saino, K. Lee, and others, eds. 2010. An International Observational Network for Ocean Acidification. ESA Publication WPP-306, Venice, Italy, September 21–25, 2009, https://doi.org/10.5270/OceanObs09.cwp.29.
  18. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1,490–1,492, https://doi.org/10.1126/science.1155676.
  19. Garcia, H.E., C. Cosca, A. Kozyr, E. Mayorga, C. Chandler, R.W. Thomas, K. O’Brien, W. Appeltans, S. Hankin, J.A. Newton, and others. 2015. Data management strategy to improve global use of ocean acidification data and information. Oceanography 28(2):226–228, https://doi.org/10.5670/oceanog.2015.45.
  20. Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T.L. Frölicher, and G.-K. Plattner. 2012. Rapid progression of ocean acidification in the California Current System. Science 337:220–223, https://doi.org/10.1126/science.1216773.
  21. Hauri, C., N. Gruber, C.-K. Plattner, S. Alin, R.A. Feely, B. Hales, and P.A. Wheeler. 2009. Ocean acidification in the California Current System. Oceanography 22(4):60–71, https://doi.org/10.5670/oceanog.2009.97.
  22. Hoffmann, A.A., and C.M. Sgrò. 2011. Climate change and evolutionary adaptation. Nature 470:479–485, https://doi.org/10.1038/nature09670.
  23. Hofmann, G.E., J.P. Barry, P.J. Edmunds, R.D. Gates, D.A. Hutchins, T. Klinger, and M.A. Sewell. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: An organism-to-ecosystem perspective. Annual Review of Ecology, Evolution, and Systematics 41:127–147, https://doi.org/10.1146/annurev.ecolsys.110308.120227.
  24. Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, and others. 2011. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6:e28983, https://doi.org/10.1371/journal.pone.0028983.
  25. Hoppe, C.J.M., G. Langer, S.D. Rokitta, D.A. Wolf-Gladrow, and B. Rost. 2012. Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences 9:2,401–2,405, https://doi.org/10.5194/bg-9-2401-2012.
  26. Howarth, R., F. Chan, D.J. Conley, J. Garnier, S.C. Doney, R. Marino, and G. Billen. 2011. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment 9:18–26, https://doi.org/10.1890/100008.
  27. Ishimatsu, A., M. Hayashi, and T. Kikkawa. 2008. Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series 373:295–302, https://doi.org/10.3354/meps07823.
  28. Kroeker, K.J., F. Micheli, M.C. Gambi, and T.R. Martz. 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 108:14,515–14,520, https://doi.org/10.1073/pnas.1107789108.
  29. Lee, K., F.J. Millero, R.A. Byrne, R.A. Feely, and R. Wanninkhof. 2000. The recommended dissociation constants for carbonic acid in seawater. Geophysical Research Letters 27:229–232, https://doi.org/10.1029/1999GL002345.
  30. Leinweber, A., and N. Gruber. 2013. Variability and trends of ocean acidification in the Southern California Current System: A time series from Santa Monica Bay. Journal of Geophysical Research 118:3,622–3,633, https://doi.org/10.1002/jgrc.20259.
  31. Lueker, T.J., A.G. Dickson, and C.D. Keeling. 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry 70:105–119, https://doi.org/10.1016/S0304-4203(00)00022-0.
  32. McCulloch, M., J. Falter, J. Trotter, and P. Montagna. 2012. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change 2:623–633, https://doi.org/10.1038/nclimate1473.
  33. Melzner, F., J. Thomsen, W. Koeve, A. Oschlies, M.A. Gutowska, H.W. Bange, H.P. Hansen, A. Körtzinger. 2013. Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology 160:875–1888, https://doi.org/10.1007/s00227-012-1954-1.
  34. Mucci, A. 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere pressure. American Journal of Science 283:780–799, https://doi.org/10.2475/ajs.283.7.780.
  35. Newton, J.A., R.A. Feely, E.B. Jewett, P. Williamson, and J. Mathis. 2014. Global Ocean Acidification Observing Network: Requirements and Governance Plan. 60 pp., http://www.goa-on.org/docs/GOA-ON_plan_print.pdf.
  36. Riebesell, U., V.J. Fabry, L. Hansson, and J.P. Gattuso, eds. 2010. Guide to Best Practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, 260 pp., http://www.iaea.org/ocean-acidification/download/7_Best practices/OA_guide_20110726.pdf.
  37. Ries, J. 2011. Acid ocean cover up. Nature Climate Change 1:294–295, https://doi.org/10.1038/nclimate1204.
  38. Roleda, M.Y., P.W. Boyd, and C.L. Hurd. 2012. Before ocean acidification: Calcifier chemistry lessons. Journal of Phycology 48:840–843, https://doi.org/10.1111/j.1529-8817.2012.01195.x.
  39. Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97:7,373–7,382, https://doi.org/10.1029/92JC00188.
  40. Weiss, R.F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry 2:203–215, https://doi.org/10.1016/0304-4203(74)90015-2.
  41. Weiss, R.F., and B.A Price. 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry. 8:347–359, https://doi.org/10.1016/0304-4203(80)90024-9.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.