Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 04

View Issue TOC
Volume 22, No. 4
Pages 108 - 117

OpenAccess

Coral Reefs and Ocean Acidification

By Joan A. Kleypas  and Kimberly K. Yates  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Coral reefs were one of the first ecosystems to be recognized as vulnerable to ocean acidification. To date, most scientific investigations into the effects of ocean acidification on coral reefs have been related to the reefs’ unique ability to produce voluminous amounts of calcium carbonate. It has been estimated that the main reef-building organisms, corals and calcifying macroalgae, will calcify 10–50% less relative to pre-industrial rates by the middle of this century. This decreased calcification is likely to affect their ability to function within the ecosystem and will almost certainly affect the workings of the ecosystem itself. However, ocean acidification affects not only the organisms, but also the reefs they build. The decline in calcium carbonate production, coupled with an increase in calcium carbonate dissolution, will diminish reef building and the benefits that reefs provide, such as high structural complexity that supports biodiversity on reefs, and breakwater effects that protect shorelines and create quiet habitats for other ecosystems, such as mangroves and seagrass beds. The focus on calcification in reefs is warranted, but the responses of many other organisms, such as fish, noncalcifying algae, and seagrasses, to name a few, deserve a close look as well.

Citation

Kleypas, J.A., and K.K. Yates. 2009. Coral reefs and ocean acidification. Oceanography 22(4):108–117, https://doi.org/10.5670/oceanog.2009.101.

References
    Albright, R., B. Mason, and C. Langdon. 2008. Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs 27(3):485–490.
  1. Alvarez-Filip, L., N.K. Dulvy, J.A. Gill, I.M. Côté, and A.R. Watkinson. 2009. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proceedings of the Royal Society B-Biological Sciences 276:3,019–3,025.
  2. Andersson, A.J., N.R. Bates, and F.T. Mackenzie. 2007. Dissolution of carbonate sediments under rising pCO2 and ocean acidification: Observations from Devil’s Hole, Bermuda. Aquatic Geochemistry 13(3):237–264, doi:10.1007/s10498-007-9018-8. 
  3. Anthony, K.R.N., D.I. Kline, G. Diaz-Pulido, S. Dove, and O. Hoegh-Guldberg. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America 105(45):17,442–17,446.
  4. Bates, N.R., L. Samuels, and L. Merlivat. 2001. Biogeochemical and physical factors influencing seawater fCO2, and air-sea CO2 exchange on the Bermuda coral reef. Limnology and Oceanography 46(4):833–846.
  5. Bellwood, D.R., T.P. Hughes, C. Folke, and M. Nyström. 2004. Confronting the coral reef crisis. Nature 429(6994):827–833.
  6. Bernhard, J.M., J.P. Barry, K.R. Buck, and V.R. Starczak. 2009. Impact of intentionally injected carbon dioxide hydrate on deep-sea benthic foraminiferal survival. Global Change Biology 15(8):2,078–2,088.
  7. Burton, E.A., and L.M. Walter. 1987. Relative precipitation rates of aragonite and Mg-calcite from seawater: Temperature or carbonate ion control. Geology 15(2):111–114.
  8. Clark, D., M. Lamare, and M. Barker. 2009. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: A comparison among a tropical, temperate, and a polar species. Marine Biology 156(6):1,125–1,137.
  9. Cohen, A.L., and M. Holcomb. 2009. Why corals care about ocean acidification: Uncovering the mechanism. Oceanography 22(4):118–127.
  10. Cohen, A.L., D.C. McCorkle, S. de Putron, G.A. Gaetani, and K.A. Rose. 2009. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochemistry Geophysics Geosystems 10(1), doi:10.1029/2009GC002411.
  11. de Beer, D., and A.W.D. Larkum. 2001. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell and Environment 24(11):1,209–1,217.
  12. De’ath, G., J.M. Lough, and K.E. Fabricius. 2009. Declining coral calcification on the Great Barrier Reef. Science 323(5910):116–119.
  13. Feeley, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47.
  14. Freile, D., J.D. Milliman, and L. Hillis. 1995. Leeward bank margin Halimeda meadows and draperies and their sedimentary importance on the western Great Bahama Bank Slope. Coral Reefs 14(1):27–33.
  15. Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano, and M. Kiyohara. 1991. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. Journal of Applied Phycology 3(4):355–362.
  16. Gao, K., Y. Aruga, K. Asada, and M. Kiyohara. 1993. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. Journal of Applied Phycology 5(6):563–571.
  17. Gattuso, J.-P., M. Pichon, B. Delesalle, and M. Frankignoulle. 1993. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Marine Ecology Progress Series 96(3):259–267.
  18. Gattuso, J.-P., M. Frankignoulle, I. Bourge, S. Romaine, and R.W. Buddemeier. 1998. Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change 18(1–2):37–46.
  19. Gazeau, F., C. Quiblier, J.M. Jansen, J.-P. Gattuso, J.J. Middelburg, and C.H.R. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34, L07603, doi:10.1029/2006GL028554.
  20. Gooding, R.A., C.D.G. Harley, and E. Tang. 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences of the United States of America 106(23):9,316–9,321.
  21. Graham, N.A.J., S.K. Wilson, S. Jennings, N.V.C. Polunin, J.P. Bijoux, and J. Robinson. 2006. Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences of the United States of America 103(22):8,425–8,429.
  22. Green, M.A., M.E. Jones, C.L. Boudreau, R.L. Moore, and B.A. Westman. 2004. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49(3):727–734.
  23. Hall-Spencer, J.M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, S.J. Rowley, D. Tedesco, and M.C. Buia. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200):96–99.
  24. Hatcher, B.G. 1984. A maritime accident provides evidence for alternate stable states in benthic communities on coral reefs. Coral Reefs 3:199–204.
  25. Heyward, A.J., and A.P. Negri. 1999. Natural inducers for coral larval metamorphosis. Coral Reefs 18(3):273–279.
  26. Hohenegger, J. 2006. The importance of symbiont-bearing benthic foraminifera for West Pacific carbonate beach environments. Marine Micropaleontology 61(1–3):4–39.
  27. Hughes, T.P. 1994. Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral reef. Science 265(5178):1,547–1,551.
  28. Hunter, C.L., and C.W. Evans. 1995. Coral reefs in Kaneohe Bay, Hawaii: Two centuries of western influence and two decades of data. Bulletin of Marine Science 57(2):501–515.
  29. Jokiel, P.L., K.S. Rodgers, I.B. Kuffner, A.J. Andersson, E.F. Cox, and F.T. Mackenzie. 2008. Ocean acidification and calcifying reef organisms: A mesocosm investigation. Coral Reefs 27(3):473–483.
  30. Jones, G.P., M.I. McCormick, M. Srinivasan, and J.V. Eagle. 2004. Coral decline threatens fish biodiversity in marine reserves. Proceedings of the National Academy of Sciences of the United States of America 101(21):8,251–8,253.
  31. Kinsey, D.W. 1978. Alkalinity changes and coral reef calcification. Limnology and Oceanography 23(5):989–991.
  32. Kinsey, D.W. 1985. Metabolism, calcification and carbon production. I. Systems level studies. Proceedings of the 5th International Coral Reef Symposium 4:505–526.
  33. Kleypas, J.A., and C. Langdon. 2006. Coral reefs and changing seawater chemistry. Pp. 73–110 in Coral Reefs and Climate Change: Science and Management. J.T. Phinney, W. Skirving, J. Kleypas, and O. Hoegh-Guldberg, eds, American Geophysical Union, Washington, DC.
  34. Kleypas, J.A., J.W. McManus, and L.A.B. Menez. 1999. Environmental limits to coral reef development: Where do we draw the line? American Zoologist 39(1):146–159.
  35. Knoll, A.H., R.K. Bambach, J.L. Payne, S. Pruss, and W.W. Fischer. 2007. Paleophysiology and the end-Permian mass extinction. Earth and Planetary Science Letters 256:295–313.
  36. Kübler, J.E., A.M. Johnston, and J.A. Raven. 1999. The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell and Environment 22(10):1,303–1,310.
  37. Kuffner, I.B., A.J. Andersson, P.L. Jokiel, K.S. Rodgers, and F.T. Mackenzie. 2008. Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience 1(2):77–140.
  38. Kump, L.R., T.J. Bralower, and A. Ridgwell. 2009. Ocean acidification in deep time. Oceanography 22(4):94–107.
  39. Kurihara, H., and Y. Shirayama. 2004. Effects of increased atmospheric CO2 on sea urchin early development. Marine Ecology Progress Series 274:161–169.
  40. Kurihara, H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373:275–284.
  41. Langdon, C., T. Takahashi, C. Sweeney, D. Chipman, J. Goddard, F. Marubini, H. Aceves, H. Barnett, and M.J. Atkinson. 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles 14(2):639–654.
  42. Langdon, C., W.S. Broecker, D.E. Hammond, E. Glenn, K. Fitzsimmons, S.G. Nelson, T.H. Peng, I. Hajdas, and G. Bonani. 2003. Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles 17(1):1011, doi:1010.1029/2002GB001941.
  43. Lebrato, M., D. Iglesias-Rodríguez, R.A. Feely, D. Greeley, D.O.B. Jones, N. Suarez-Bosche, R.S. Lampitt, J.E. Cartes, D.R.H. Green, and B. Alker. In press. Global contribution of echinoderms to the marine carbon cycle: A reassessment of the oceanic CaCO3 budget and the benthic compartments. ESA Ecological Monographs.
  44. Littler, M.M., D.S. Littler, S.M. Blair, and J.N. Norris. 1985. Deepest known plant life discovered on an uncharted seamount. Science 227(4682):57–59.
  45. Lough, J.M., and D.J. Barnes. 2000. Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology 245(2):225–243.
  46. Marshall, A.T., and P.L. Clode. 2002. Effect of increased calcium concentration in sea water on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Journal of Experimental Biology 205(14):2,107–2,113.
  47. Martin, S., R. Rodolfo-Metalpa, E. Ransome, S. Rowley, M. C. Buia, J.-P. Gattuso, and J. Hall-Spencer. 2008. Effects of naturally acidified seawater on seagrass calcareous epibionts. Biology Letters 4(6):689–692.
  48. Martin, S., and J.-P. Gattuso. 2009. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology, doi:10.1111/j.1365-2486.2009.01874.x.
  49. McConnaughey, T.A., W.H. Adey, and A.M. Small. 2000. Community and environmental influences on reef coral calcification. Limnology and Oceanography 45(7):1,667–1,671.
  50. Miles, H., S. Widdicombe, J.I. Spicer, and J. Hall-Spencer. 2007. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Marine Pollution Bulletin 54(1):89–96.
  51. Miller, A.W., A.C. Reynolds, C. Sobrino, and G.F. Riedel. 2009. Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4(5):e5661.
  52. Milliman, J.D., and A.W. Droxler. 1996. Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geologische Rundschau 85(3): 496-504.
  53. Munday, P.L., D.L. Dixson, J.M. Donelson, G.P. Jones, M.S. Pratchett, G.V. Devitsina, and K.B. Doving. 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences of the United States of America 106(6):1,848–1,852.
  54. Nelson, W.A. 2009. Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: A review. Marine and Freshwater Research 60(8):787–801.
  55. Norström, A.V., M. Nyström, J. Lokrantz, and C. Folke. 2009. Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Marine Ecology Progress Series 376:295–306.
  56. Palacios, S.L., and R.C. Zimmerman. 2007. Response of eelgrass Zostera marina to CO2 enrichment: Possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series 344:1–13.
  57. Politi, Y., T. Arad, E. Klein, S. Weiner, and L. Addadi. 2004. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306(5699):1,161–1,164.
  58. Ries, J.B. 2009. Effects of secular variation in seawater Mg/Ca ratio (calcite-aragonite seas) on CaCO3 sediment production by the calcareous algae Halimeda, Penicillus and Udotea: Evidence from recent experiments and the geological record. Terra Nova 21(5):323–339.
  59. Semesi, I.S., S. Beer, and M. Björk. 2009. Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series 382:41–47.
  60. Silverman, J., B. Lazar, L. Cao, K. Caldeira, and J. Erez. 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters 36, L05606, doi:10.1029/2008GL036282.
  61. Smith, S.V., and R.W. Buddemeier. 1992. Global change and coral reef ecosystems. Annual Review of Ecology and Systematics 23:89–118.
  62. Smith, S.V., and G.S. Key. 1975. Carbon-dioxide and metabolism in marine environments. Limnology and Oceanography 20(3):493–495.
  63. Smith, S.V., and D.W. Kinsey. 1978. Calcification and organic carbon metabolism as indicated by carbon dioxide. Pp. 469–484 in Coral Reefs: Research Methods. D.R. Stoddart and R.E. Johannes, eds, Unesco, Paris.
  64. Smith, S.V., and F. Pesret. 1974. Processes of carbon dioxide flux in Fanning Island Lagoon. Pacific Science 28(3):225–245.
  65. Suzuki, A., and H. Kawahata. 2003. Carbon budget of coral reef systems: An overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions. Tellus Series B-Chemical and Physical Meteorology 55(2):428–444.
  66. Talmage, S.C., and C.J. Gobler. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnology and Oceanography 54(6):2,072–2,080.
  67. Todgham, A.E., and G.E. Hofmann. 2009. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. Journal of Experimental Biology 212(16):2,579–2,594.
  68. Tribollet, A., C. Godinot, M.J. Atkinson, and C. Langdon. 2009. Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochemical Cycles 23, GB3008, doi:10.1029/2008GB003286.
  69. Williams, E.A., A. Craigie, A. Yeates, and S.M. Degnan. 2008. Articulated coralline algae of the genus Amphiroa are highly effective natural inducers of settlement in the tropical abalone Haliotis asinina. Biological Bulletin 215(1):98–107.
  70. Wood, H.L., J.I. Spicer, and S. Widdicombe. 2008. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B, doi:10.1098/rspb.2008.0343. 
  71. Yates, K.K., and R.B. Halley. 2006. CO32– concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences 3(3):357–369.
  72. Zachos, J.C., U. Rohl, S.A. Schellenberg, A. Sluijs, D. A. Hodell, D.C. Kelly, E. Thomas, M. Nicolo, I. Raffi, L.J. Lourens, H. McCarren, and D. Kroon. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308(5728):1,611–1,615.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.