Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 04

View Issue TOC
Volume 32, No. 4
Pages 146 - 155

OpenAccess

Connecting Process Models of Topographic Wave Drag to Global Eddying General Circulation Models

By Brian K. Arbic , Oliver B. Fringer, Jody M. Klymak, Frederick T. Mayer, David S. Trossman, and Peiyun Zhu 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

This paper focuses on the representation of damping of mesoscale eddies, currents, and tides in global ocean models by the topographic wave drag they generate over bathymetric features. Insertion of parameterized topographic wave drag into global high-resolution models strongly impacts the energy budget, near-bottom stratification, near-bottom velocities, and vertical structure of low-frequency mesoscale eddies and currents, and impacts the low-frequency surface kinetic energy and sea surface height variance to a measurable (though lesser) extent. Parameterized topographic wave drag also strongly impacts the amplitudes of tidal motions. Process modeling studies show great potential to improve existing topographic wave drag parameterizations, although much more work is needed to develop a complete understanding of the full parameter space needed to develop practical implementations for global ocean models.

Citation

Arbic, B.K., O.B. Fringer, J.M. Klymak, F.T. Mayer, D.S. Trossman, and P. Zhu. 2019. Connecting process models of topographic wave drag to global eddying general circulation models. Oceanography 32(4):146–155, https://doi.org/10.5670/oceanog.2019.420.

References
    Abernathey, R., and P. Cessi. 2014. Topographic enhancement of eddy efficiency in baroclinic equilibration. Journal of Physical Oceanography 44:2,107–2,126, https://doi.org/10.1175/jpo-d-14-0014.1.
  1. Alford, M.H., and Z. Zhao. 2007. Global patterns of low-mode internal-wave propagation: Part I. Energy and energy flux. Journal of Physical Oceanography 37:1,829–1,848, https://doi.org/​10.1175/JPO3085.1.
  2. Ansong, J.K., B.K. Arbic, M.C. Buijsman, J.G. Richman, J.F. Shriver, and A.J. Wallcraft. 2015. Indirect evidence for substantial damping of low-mode internal tides in the open ocean. Journal of Geophysical Research Oceans 120:6,057–6,071, https://doi.org/​10.1002/2015JC010998.
  3. Arbic, B.K., and G.R. Flierl. 2004. Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to mid-ocean eddies. Journal of Physical Oceanography 34:2,257–2,273, https://doi.org/​10.1175/1520-​0485​(2004)034​<2257:BUGTIT>​2.0.CO;2.
  4. Arbic, B.K., G.R. Flierl, and R.B. Scott. 2007. Cascade inequalities for forced-dissipated geostrophic turbulence. Journal of Physical Oceanography 37:1,470–1,487, https://doi.org/​10.1175/JPO3067.1.
  5. Arbic, B.K., and R.B. Scott. 2008. On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies. Journal of Physical Oceanography 38:84–103, https://doi.org/​10.1175/2007JPO3653.1.
  6. Arbic, B.K., J.F. Shriver, P.J. Hogan, H.E. Hurlburt, J.L. McClean, E.J. Metzger, R.B. Scott, A. Sen, O.M. Smedstad, and A.J. Wallcraft. 2009. Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. Journal of Geophysical Research 114, C02024, https://doi.org/​10.1029/​2008JC005072.
  7. Arbic, B.K., A.J. Wallcraft, and E.J. Metzger. 2010. Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling 32:175–187, https://doi.org/10.1016/​j.ocemod.2010.01.007.
  8. Arbic, B.K., M.H. Alford, J.K. Ansong, M.C. Buijsman, R.B. Ciotti, J.T. Farrar, R.W. Hallberg, C.E. Henze, C.N. Hill, C.A. Luecke, and others. 2018. A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. Pp. 307–392 in New Frontiers in Operational Oceanography. E. Chassignet, A. Pascual, J. Tintore, and J. Verron, eds, GODAE OceanView, https://doi.org/10.17125/gov2018.ch13.
  9. Baines, P.G. 1995. Topographic Effects in Stratified Flows. Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge.
  10. Bell, T.H. 1975. Lee waves in stratified flows with simple harmonic time dependence. Journal of Fluid Dynamics 67:705–722, https://doi.org/10.1017/S0022112075000560.
  11. Buijsman, M.C., J.K. Ansong, B.K. Arbic, J.G. Richman, J.F. Shriver, P.G. Timko, A.J. Wallcraft, C.B. Whalen, and Z. Zhao. 2016. Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. Journal of Physical Oceanography 46:1,399–1,419, https://doi.org/​10.1175/JPO-D-15-0074.1.
  12. Chassignet, E.P., H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J.A. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, and others. 2009. US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 22(2):64–76, https://doi.org/​10.5670/oceanog.2009.39.
  13. Cummings, J.A. 2005. Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society 121:3,583–3,604, https://doi.org/​10.1256/qj.05.105.
  14. Dossman, Y., M.G. Rosevear, R.W. Griffiths, A. McC. Hogg, G.O. Hughes, and M. Copeland. 2016. Experiments with mixing in stratified flow over a topographic ridge. Journal of Geophysical Research 121:6,961–6,977, https://doi.org/​10.1002/​2016JC011990.
  15. Eden, C., and D. Olbers. 2017. A closure for internal wave-mean flow interaction: Part II. Wave drag. Journal of Physical Oceanography 47:1,403–1,412, https://doi.org/10.1175/JPO-D-16-0056.1.
  16. Garner, S.T. 2005. A topographic drag closure built on an analytical base flux. Journal of the Atmospheric Sciences 62:2,302–2,315, https://doi.org/10.1175/JAS3496.1.
  17. Garner, S.T. 2018. Ground-truth model evaluation of subgrid orographic base-flux parameterization. Journal of the Atmospheric Sciences 75:3,653–3,670, https://doi.org/10.1175/JAS-D-17-0368.1.
  18. Goff, J.A. 2010. Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. Journal of Geophysical Research 115, B12104, https://doi.org/​10.1029/​2010JB007867.
  19. Goff, J.A., and B.K. Arbic. 2010. Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness. Ocean Modelling 32:36–43, https://doi.org/​10.1016/j.ocemod.2009.10.001.
  20. Jayne, S.R., and L.C. St. Laurent. 2001. Parameterizing tidal dissipation over rough topography. Geophysical Research Letters 28(5):811–814, https://doi.org/10.1029/2000GL012044.
  21. Johnston, T.M.S., J.A. MacKinnon, P.L. Colin, P.J. Haley Jr., P.F.J. Lermusiaux, A.J. Lucas, M.A. Merrifield, S.T. Merrifield, C. Mirabito, J.D. Nash, and others. 2019. Energy and momentum lost to wake eddies and lee waves generated by the North Equatorial Current and tidal flows at Peleliu, Palau. Oceanography 32(4):110–125, https://doi.org/10.5670/oceanog.2019.417.
  22. Klymak, J.M., S. Legg, and R. Pinkel. 2010. High-mode stationary waves in stratified flow over large obstacles. Journal of Fluid Mechanics 644:312–336, https://doi.org/10.1017/S0022112009992503.
  23. Klymak, J.M. 2018. Nonpropagating form drag and turbulence due to stratified flow over large-scale abyssal hill topography. Journal of Physical Oceanography 48:2,383–2,395, https://doi.org/​10.1175/jpo-d-17-0225.1.
  24. Kunze, E. 2017. Internal-wave-driven mixing: Global geography and budgets. Journal of Physical Oceanography 47:1,325–1,345, https://doi.org/​10.1175/​JPO-D-16-0141.1.
  25. Lott, F., and M.J. Miller. 1997. A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quarterly Journal of the Royal Meteorological Society 123(537):101–127, https://doi.org/10.1002/qj.49712353704.
  26. MacKinnon, J.A., M.H. Alford, G. Voet, K.L. Zieden, T.M.S. Johnston, M. Siegelman, S. Merrifield, and M. Merrifield. 2019. Eddy wake generation from broadband currents near Palau. Journal of Geophysical Research 124(7):4,891–4,903, https://doi.org/​10.1029/2019JC014945.
  27. Marshall, D.P., M. H.P. Ambaum, J.R. Maddison, D.R. Munday, and L. Novak. 2017. Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophysical Research Letters 44:286–292, https://doi.org/​10.1002/​2016gl071702.
  28. Mayer, F.T., and O.B. Fringer. 2017. An unambiguous definition of the Froude number for lee waves in the deep ocean. Journal of Fluid Mechanics 831, https://doi.org/10.1017/jfm.2017.701.
  29. Melet, A., M. Nikurashim, C. Muller, S. Falahat, J. Nycander, P.G. Timko, B.K. Arbic, and J.A. Goff. 2013. Internal tide generation by abyssal hills using analytical theory. Journal of Geophysical Research 118(11):6,303–6,318, https://doi.org/​10.1002/​2013JC009212.
  30. Nikurashin, M., and R. Ferrari. 2011. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophysical Research Letters 38:1–6, https://doi.org/​10.1029/2011GL046576.
  31. Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin. 2014. The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. Journal of Physical Oceanography 44:2,938–2,950, https://doi.org/​10.1175/JPO-D-13-0201.1.
  32. Olbers, D., and C. Eden. 2017. A closure for internal wave-mean flow interaction: Part I. Energy conversion. Journal of Physical Oceanography 47:1,389–1,401, https://doi.org/​10.1175/JPO-D-16-0054.1.
  33. Olbers, D., C. Eden, E. Becker, F. Pollmann, and J. Jungclaus. 2019. The IDEMIX model: Parameterization of internal gravity waves for circulation models of ocean and atmosphere. Pp. 87–125 in Energy Transfers in Atmosphere and Ocean. Mathematics of Planet Earth, vol 1., C. Eden and A. Iske, eds, Springer, https://doi.org/​10.1007/978-3-030-05704-6_3.
  34. Pearson, B., B. Fox-Kemper, S. Bachman, and F. Bryan. 2017. Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean Modelling 115:42–58, https://doi.org/10.1016/​j.ocemod.2017.05.007.
  35. Pierrehumbert, R.T. 1987. An essay on the parameterization of orographic gravity wave drag. Pp. 251–282 in the proceedings of Seminar/Workshop on Observations, Theory and Modelling of Orographic Effects, vol. 1. ECMWF, Shinfield Park, Reading, UK.
  36. Scinocca, J.F., and N.A. McFarlane. 2000. The parametrization of drag induced by stratified flow over anisotropic orography. Quarterly Journal of the Royal Meteorological Society 126(568):2,353–2,393, https://doi.org/​10.1002/qj.49712656802.
  37. Scott, R.B., and F. Wang. 2005. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. Journal of Physical Oceanography 35:1,650–1,666, https://doi.org/​10.1175/JPO2771.1.
  38. Scott, R.B., J.A. Goff, A.C. Naveira-Garabato, and A.J.G. Nurser. 2011. Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. Journal of Geophysical Research 116, C09029, https://doi.org/​10.1029/2011JC007005.
  39. Sen, A., R.B. Scott, and B.K. Arbic. 2008. Global energy dissipation rate of deep-ocean low-​frequency flows by quadratic bottom boundary layer drag: Computations from current meter data. Geophysical Research Letters 35, L09606, https://doi.org/10.1029/2008GL033407.
  40. Shriver, J.F., B.K. Arbic, J.G. Richman, R.D. Ray, E.J. Metzger, A.J. Wallcraft, and P.G. Timko. 2012. An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model. Journal of Geophysical Research 117, C10024, https://doi.org/10.1029/2012JC008170.
  41. Smith, W.H.F., and D.T. Sandwell. 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1,956–1,962, https://doi.org/​10.1126/science.277.5334.1956.
  42. Snyder, W.H., R.S. Thompson, R.E. Eskridge, R.E. Lawson, I.P. Castro, J. Lee, J., J.C. Hunt, and Y. Ogawa. 1985. The structure of strongly stratified flow over hills: Dividing-streamline concept. Journal of Fluid Mechanics 152:249–288, https://doi.org/10.1017/S0022112085000684.
  43. St. Laurent, L.C., H.L. Simmons, and S.R. Jayne. 2002. Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters 29(23):21-1–21-4, https://doi.org/10.1029/2002GL015633.
  44. Taylor, G.I. 1919. Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society of London A 220:1–93, https://doi.org/10.1098/rspa.1919.0059.
  45. Thompson, A.F., and W.R. Young. 2006. Scaling baroclinic eddy fluxes: Vortices and energy balance. Journal of Physical Oceanography 36:720–738, https://doi.org/10.1175/JPO2874.1.
  46. Thurnherr, A.M., and K.G. Speer. 2003. Boundary mixing and topographic blocking on the Mid-Atlantic Ridge in the South Atlantic. Journal of Physical Oceanography 33:848–862, https://doi.org/10.1175/1520-0485(2003)33​<848:BMATBO>2.0.CO;2.
  47. Thyng, K.M., C.A. Greene, R.D. Hetland, H.M. Zimmerle, and S.F. DiMarco. 2016. True colors of oceanography: Guidelines for effective and accurate colormap selection. Oceanography 29(3):9–13, https://doi.org/10.5670/oceanog.2016.66.
  48. Timko, P.G., B.K. Arbic, J.A. Goff, J.K. Ansong, W.H.F. Smith, A. Melet, and A.J. Wallcraft. 2017. Impact of synthetic abyssal hill roughness on resolved motions in numerical global ocean tide models. Ocean Modelling 112:1–16, https://doi.org/​10.1016/j.ocemod.2017.02.005.
  49. Trossman, D.S., B.K. Arbic, S.T. Garner, J.A. Goff, S.R. Jayne, E.J. Metzger, and A.J. Wallcraft. 2013. Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model. Ocean Modelling 72:119–142, https://doi.org/​10.1016/j.ocemod.2013.08.006.
  50. Trossman, D.S., S. Waterman, K.L. Polzin, B.K. Arbic, S.T. Garner, A.C. Naveira-Garabato, and K.L. Sheen. 2015. Internal lee wave closures: Parameter sensitivity and comparison to observations. Journal of Geophysical Research 120:7,997–8,019, https://doi.org/​10.1002/​2015JC010892.
  51. Trossman, D.S., B.K. Arbic, J.G. Richman, S.T. Garner, S.R. Jayne, and A.J. Wallcraft. 2016. Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modelling 97:109–128, https://doi.org/10.1016/j.ocemod.2015.10.013.
  52. Trossman, D.S., B.K. Arbic, D.N. Straub, J.G. Richman, E.P. Chassignet, A.J. Wallcraft, and X. Xu. 2017. The role of rough topography in mediating impacts of bottom drag in eddying ocean circulation models. Journal of Physical Oceanography 47:1,941–1,959, https://doi.org/10.1175/JPO-D-16-0229.1.
  53. Waterhouse, A.F., J.A. MacKinnon, J.D. Nash, M.H. Alford, E. Kunze, H.L. Simmons, K.L. Polzin, L.C. St. Laurent, O.M. Sun, R. Pinkel, and others. 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. Journal of Physical Oceanography 44:1,854–1,872, https://doi.org/10.1175/JPO-D-13-0104.1.
  54. Welch, W.T., P. Smolarkiewicz, R. Rotunno, and B.A. Boville. 2001. The large-scale effects of flow over periodic mesoscale topography. Journal of Atmospheric Science 58(12):1,477–1,492, https://doi.org/10.1175/1520-0469(2001)058​<1477:TLSEOF>2.0.CO;2.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.