Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 04

View Issue TOC
Volume 26, No. 4
Pages 34 - 51

OpenAccess

Climate Impacts on Zooplankton Population Dynamics in Coastal Marine Ecosystems

By Harold P. Batchelder , Kendra L. Daly, Cabell S. Davis , Rubao Ji , Mark D. Ohman, William T. Peterson, and Jeffrey A. Runge 
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

The 20-year US GLOBEC (Global Ocean Ecosystem Dynamics) program examined zooplankton populations and their predators in four coastal marine ecosystems. Program scientists learned that environmental controls on zooplankton vital rates, especially the timing and magnitude of reproduction, growth, life-cycle progression, and mortality, determine species population dynamics, seasonal and spatial distributions, and abundances. Improved knowledge of spatial-temporal abundance and distribution of individual zooplankton taxa coupled with new information linking higher trophic level predators (salmon, cod, haddock, penguins, seals) to their prey yielded mechanistic descriptions of how climate variation impacts regionally important marine resources. Coupled ecological models driven by improved regional-scale climate scenario models developed during GLOBEC enable forecasts of plausible future conditions in coastal ecosystems, and will aid and inform decision makers and communities as they assess, respond, and adapt to the effects of environmental change. Multi-region synthesis revealed that conditions in winter, before upwelling, or seasonal stratification, or ice melt (depending on region) had significant and important effects that primed the systems for greater zooplankton population abundance and productivity the following spring-summer, with effects that propagated to higher trophic levels.

Citation

Batchelder, H.P., K.L. Daly, C.S. Davis, R. Ji, M.D. Ohman, W.T. Peterson, and J.A. Runge. 2013. Climate impacts on zooplankton population dynamics in coastal marine ecosystems. Oceanography 26(4):34–51, https://doi.org/10.5670/oceanog.2013.74.

Supplementary Materials

26-4_batchelder_supplement.xls (257 KB Microsoft Excel file)
This supplement provides tables and references for more comprehensive identification of zooplankton publications resulting from US GLOBEC.

References
    Aksnes, D.L., C.B. Miller, M.D. Ohman, and S.N. Wood. 1997. Estimation techniques used in studies of copepod population dynamics: A review of underlying assumptions. Sarsia 82:279–296.
  1. Aksnes, D.L., and M.D. Ohman. 1996. A vertical life table approach to zooplankton mortality estimation. Limnology and Oceanography 41:1,461–1,469.
  2. Armstrong, J.L., J.L. Boldt, A.D. Cross, J.H. Moss, N.D. Davis, K.W. Myers, R.V. Walker, D.A. Beauchamp, and L.J. Haldorson. 2005. Distribution, size, and interannual, seasonal and diel food habits of northern Gulf of Alaska juvenile pink salmon, Oncorhynchus gorbuscha. Deep Sea Research Part II 52:247–265, https://doi.org/10.1016/j.dsr2.2004.09.019.
  3. Armstrong, J.L., K.W. Myers, D.A. Beauchamp, N.D. Davis, R.V. Walker, J.L. Boldt, J.J. Piccolo, L.J. Haldorson, and J.H. Moss. 2008. Interannual and spatial feeding patterns of hatchery and wild juvenile pink salmon in the Gulf of Alaska in years of low and high survival. Transactions of the American Fisheries Society 137:1,299–1,316, https://doi.org/10.1577/T07-196.1.
  4. Ashjian, C.J., G.A. Rosenwaks, P.H. Wiebe, C.S. Davis, S.M. Gallager, N.J. Copley, G.L. Lawson, and P. Alatalo. 2004. Distribution of zooplankton on the continental shelf off Marguerite Bay, Antarctic Peninsula, during austral fall and winter, 2001. Deep Sea Research Part II 51:2,073–2,098, https://doi.org/10.1016/j.dsr2.2004.07.025.
  5. Bakun, A., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Scientia Marina 70:105–122, https://doi.org/10.3989/scimar.2006.70s2105.
  6. Ballerini, T., E.E. Hofmann, D.G. Ainley, K. Daly, M. Marrari, C.A. Ribic, W.O. Smith Jr., and J.H. Steele. In press. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf. Progress in Oceanography, https://doi.org/10.1016/j.pocean.2013.11.007.
  7. Barth, J.A., and P.A. Wheeler. 2005. Introduction to special section: Coastal Advances in Shelf Transport. Journal of Geophysical Research 110, C10S01, https://doi.org/10.1029/2005JC003124.
  8. Batchelder, H.P., J.A. Barth, P.M. Kosro, P.T. Strub, R.D. Brodeur, W.T. Peterson, C.T. Tynan, M.D. Ohman, L.W. Bostford, T.M. Powell, and others. 2002. The GLOBEC Northeast Pacific California Current System Program. Oceanography 15(2):36–47, https://doi.org/10.5670/oceanog.2002.20.
  9. Beamish, R.J., and C. Mahnken. 2001. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change. Progress in Oceanography 49:423–437, https://doi.org/10.1016/S0079-6611(01)00034-9.
  10. Beardsley, R.C., A.W. Epstein, C. Chen, K.F. Wishner, M.C. Macaulay, and R.D. Kenney. 1996. Spatial variability in zooplankton abundance near feeding right whales in the Great South Channel. Deep Sea Research Part II 43:1,601–1,625, https://doi.org/10.1016/S0967-0645(96)00050-1.
  11. Beaugrand, G., K.M. Brander, J.A. Lindley, S. Souissi, and P.C. Reid. 2003. Plankton effect on cod recruitment in the North Sea. Nature 426:661–664, https://doi.org/10.1038/nature02164.
  12. Benfield, M.C., C.S. Davis, P.H. Wiebe, S.M. Gallager, R.G. Lough, and N.J. Copley. 1996. Video Plankton Recorder estimates of copepod, pteropod and larvacean distributions from a stratified region of Georges Bank with comparative measurements from a MOCNESS sampler. Deep Sea Research Part II 43:1,925–1,945, https://doi.org/10.1016/S0967-0645(96)00044-6.
  13. Bi, H., W.T. Peterson, and P.T. Strub. 2011. Transport and coastal zooplankton communities in the northern California Current system. Geophysical Research Letters 38, L12607, https://doi.org/10.1029/2011GL047927.
  14. Bigelow, H.B. 1926. Plankton of the Offshore Waters of the Gulf of Maine. Department of Commerce, Bureau of Fisheries, Doc. 968, Washington, DC, 486 pp, https://doi.org/10.5962/bhl.title.4192.
  15. Black, B.A., I.D. Schroeder, W.J. Sydeman, S.J. Bograd, and P.W. Lawson. 2010. Wintertime ocean conditions synchronize rockfish growth and seabird reproduction in the central California Current ecosystem. Canadian Journal of Fisheries and Aquatic Sciences 67:1,149–1,158, https://doi.org/10.1139/F10-055.
  16. Black, B.A., I.D. Schroeder, W.J. Sydeman, S.J. Bograd, B.K. Wells, and F.B. Schwing. 2011. Winter and summer upwelling modes and their biological importance in the California Current Ecosystem. Global Change Biology 17:2,536–2,545, https://doi.org/10.1111/j.1365-2486.2011.02422.x.
  17. Block, B.A., I.D. Jonsen, S.J. Jorgensen, A.J. Winship, S.A. Shaffer, S.J. Bograd, E.L. Hazen, D.G. Foley, G.A. Breed, A.-L. Harrison, and others. 2011. Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90, https://doi.org/10.1038/nature10082.
  18. Boldt, J.L., and L.J. Haldorson. 2003. Seasonal and geographic variation in juvenile pink salmon diets in the Northern Gulf of Alaska and Prince William Sound. Transactions of the American Fisheries Society 132:1,035–1,052, https://doi.org/10.1577/T02-091.
  19. Broughton, E.A., and R.G. Lough. 2010. General trends and interannual variability in prey selection by larval cod and haddock from the southern flank of Georges Bank, May 1993–1999. NOAA Technical Memorandum NMFS-NE-217. US Department of Commerce, 32 pp.
  20. Buckley, L.J., and E.G. Durbin. 2006. Seasonal and interannual trends in the zooplankton prey and growth rate of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae on Georges Bank. Deep Sea Research Part II 53:2,758–2,770, https://doi.org/10.1016/j.dsr2.2006.08.009.
  21. Castonguay, M., S. Plourde, D. Robert, J.A. Runge, and L. Fortier. 2008. Copepod production drives recruitment in a marine fish. Canadian Journal of Fisheries and Aquatic Sciences 65:1,528–1,531, https://doi.org/10.1139/F08-126.
  22. Caswell, H., 2001. Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed. Sinauer Associates Inc., Sunderland, MA.
  23. Checkley, D.M. Jr., and J.A. Barth. 2009. Patterns and processes in the California Current System. Progress in Oceanography 83:49–64, https://doi.org/10.1016/j.pocean.2009.07.028.
  24. Chhak, K.C., E. Di Lorenzo, N. Schneider, and P.F. Cummins. 2009. Forcing of low-frequency ocean variability in the Northeast Pacific. Journal of Climate 22:1,255–1,276, https://doi.org/10.1175/2008jcli2639.1.
  25. Chelton, D.B., P.A. Bernal, and J.A. McGowan. 1982. Large-scale interannual physical and biological interaction in the California Current. Journal of Marine Research 40:1,095–1,125.
  26. Coyle, K.O., and A.I. Pinchuk. 2003. Annual cycle of zooplankton abundance, biomass and production on the northern Gulf of Alaska shelf, October 1997 through October 2000. Fisheries Oceanography 12:327–338, https://doi.org/10.1046/j.1365-2419.2003.00256.x.
  27. Coyle, K.O., and A.I. Pinchuk. 2005. Seasonal cross-shelf distribution of major zooplankton taxa on the northern Gulf of Alaska shelf relative to water mass properties, species depth preferences and vertical migration behavior. Deep Sea Research Part II 52:217–245, https://doi.org/10.1016/j.dsr2.2004.09.025.
  28. Cross, A.D., D.A. Beauchamp, J.H. Moss, and K.W. Myers. 2009. Interannual variability in early marine growth, size-selective mortality, and marine survival for Prince William Sound pink salmon. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 1:57–70, https://doi.org/10.1577/C08-005.1.
  29. Cross, A.D., D.A. Beauchamp, K.W. Myers, and J.H. Moss. 2008. Early marine growth of pink salmon in Prince William Sound and the coastal Gulf of Alaska during years of low and high survival. Transactions of the American Fisheries Society 137:927–939, https://doi.org/10.1577/T07-015.1.
  30. Curchitser, E.N., H.P. Batchelder, D.B. Haidvogel, J. Fiechter, and J. Runge. 2013. Advances in physical, biological, and coupled ocean models during the US GLOBEC program. Oceanography 26(4):52–67, https://doi.org/10.5670/oceanog.2013.75.
  31. Dagg, M., S. Strom, and H. Liu. 2009. High feeding rates on large particles by Neocalanus flemingeri and N. plumchrus, and consequences for phytoplankton community structure in the subarctic Pacific Ocean. Deep Sea Research Part I 56:716–726, https://doi.org/10.1016/j.dsr.2008.12.012.
  32. Daly, K.L. 2004. Overwintering growth and development of larval Euphausia superba: An interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep Sea Research Part II 51:2,139–2,168, https://doi.org/10.1016/j.dsr2.2004.07.010.
  33. Davis, C.S., F.T. Thwaites, S.M. Gallager, and Q. Hu. 2005. A three-axis fast-tow digital Video Plankton Recorder for rapid surveys of plankton taxa and hydrography. Limnology and Oceanography Methods 3:59–74, https://doi.org/10.4319/lom.2005.3.59.
  34. Deibel, D., and K.L. Daly. 2007. Zooplankton processes in Arctic and Antarctic polynyas. Pp. 271–322 in Polynyas: Windows to the World. Elsevier Oceanography Series, vol. 74, https://doi.org/10.1016/S0422-9894(06)74009-0.
  35. Di Lorenzo, E., D. Mountain, H.P. Batchelder, N. Bond, and E.E. Hofmann. 2013. Advances in marine ecosystem dynamics from US GLOBEC: The horizontal-advection bottom-up forcing paradigm. Oceanography 26(4):22–33, https://doi.org/10.5670/oceanog.2013.73.
  36. Dorman, J.G., T.M. Powell, W.J. Sydeman, and S.J. Bograd. 2011. Advection and starvation cause krill (Euphausia pacifica) decreases in 2005 Northern California coastal populations: Implications from a model study. Geophysical Research Letters 38, L04605, https://doi.org/10.1029/2010GL046245.
  37. Drinkwater, K.F., A. Belgrano, A. Borja, A. Conversi, M. Edwards, C.H. Greene, A.J. Pershing, and H. Walker. 2003. The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. Pp. 211–234 in The North Atlantic Oscillation: Climatic Significance and Environmental Impact. J. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, eds, American Geophysical Union, Washington, DC.
  38. Durbin, E.g., R.G. Campbell, M.C. Casas, M.D. Ohman, B. Niehoff, J. Runge, and M. Wagner. 2003. Interannual variation in phytoplankton blooms and zooplankton productivity and abundance in the Gulf of Maine in winter. Marine Ecology Progress Series 254:81–100, https://doi.org/10.3354/meps254081.
  39. Durbin, E.g., and M.C. Casas. 2006. Abundance and spatial distribution of copepods on Georges Bank during the winter/spring period. Deep Sea Research Part II 53:2,537–2,569, https://doi.org/10.1016/j.dsr2.2006.08.017.
  40. Durbin, E.g., J.A. Runge, R.G. Campbell, P.R. Garrahan, M.C. Casas, and S. Plourde. 1997. Late fall-early winter recruitment of Calanus finmarchicus on Georges Bank. Marine Ecology Progress Series 151:103–114, https://doi.org/10.3354/meps151103.
  41. Edvardsen, A., M. Zhou, K.S. Tande, and Y. Zhu. 2002. Zooplankton population dynamics: Measuring in situ growth and mortality rates using an Optical Plankton Counter. Marine Ecology Progress Series 227:205–219, https://doi.org/10.3354/meps227205.
  42. Ellertsen, B., P. Fossum, P. Solemdal, S. Sundby, and S. Tilseth. 1987. The effect of biological and physical factors on the survival of Arctic-Norwegian cod and the influence on recruitment variability. Pp. 101–126 in The Effect of Oceanographic Conditions on Distribution and Population Dynamics of Commercial Fish Stocks in the Barents Sea. H. Loeng, ed., Institute of Marine Research, Bergen, Norway.
  43. Fasham, M.J.R., 1995. Variations in the seasonal cycle of biological production in subarctic oceans: A model sensitivity analysis. Deep Sea Research Part I 42:1,111–1,149, https://doi.org/10.1016/0967-0637(95)00054-A
  44. Feinberg, L.R., and W.T. Peterson. 2003. Variability in duration and intensity of euphausiid spawning off central Oregon, 1996–2001. Progress in Oceanography 57:363–379, https://doi.org/10.1016/S0079-6611(03)00106-X.
  45. Feinberg, L.R., W.T. Peterson, and C.T. Shaw. 2010. The timing and location of spawning for the euphausiid Thysanoessa spinifera off the Oregon coast, USA. Deep Sea Research Part II 57:572–583, https://doi.org/10.1016/j.dsr2.2009.10.007.
  46. Fiechter, J., and A.M. Moore. 2009. Interannual spring bloom variability and Ekman pumping in the coastal Gulf of Alaska. Journal of Geophysical Research 114, C06004, https://doi.org/10.1029/2008JC005140.
  47. Fogarty, M.J., L.W. Botsford, and F.E. Werner. 2013. Legacy of the US GLOBEC program: Current and potential contributions to marine ecosystem-based management. Oceanography 26(4):116–127, https://doi.org/10.5670/oceanog.2013.79.
  48. Francis, R.C., and S.R. Hare. 1994. Decadal-scale regime shifts in the large marine ecosystems of the Northeast Pacific: A case for historical science. Fisheries Oceanography 3:279–291, https://doi.org/10.1111/j.1365-2419.1994.tb00105.x.
  49. Francis, T., M. Scheuerell, R. Brodeur, P. Levin, J. Ruzicka, N. Tolimieri, and W. Peterson. 2012. Climate shifts the interaction web of a marine plankton community. Global Change Biology 18:2,498–2,508, https://doi.org/10.1111/j.1365-2486.2012.02702.x.
  50. Frank, K.T., B. Petrie, B.J.S. Choi, and W.C. Leggett. 2005. Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1,621–1,623, https://doi.org/10.1126/science.1113075.
  51. Frank, K.T., B. Petrie, J.A.D. Fisher, and W.C. Leggett. 2011. Transient dynamics of an altered large marine ecosystem. Nature 477:86–89, https://doi.org/10.1038/nature10285.
  52. Friedland, K.D., J.A. Hare, G.B. Wood, L.A. Col, L.J. Buckley, D.G. Mountain, J. Kane, J. Brodziak, R.G. Lough, and C.H. Pilskaln. 2008. Does the fall phytoplankton bloom control recruitment of Georges Bank haddock, Melanogrammus aeglefinus, through parental condition? Canadian Journal of Fisheries and Aquatic Sciences 65:1,076–1,086, https://doi.org/10.1139/F08-040.
  53. GLOBEC. 1991a. Theory and Modeling in GLOBEC: A First Report to the GLOBEC Steering Committee from the Working Group on Theory and Modeling. US GLOBEC Report No. 0, 9 pp.
  54. GLOBEC. 1991b. Initial Science Plan. US GLOBEC Report No. 1, 93 pp.
  55. GLOBEC. 1992. Northwest Atlantic Implementation Plan. US GLOBEC Report No. 6, 69 pp.
  56. Gómez-Gutiérrez, J., L.R. Feinberg, T. Shaw, and W.T. Peterson. 2006. Variability of brood size and female length of Euphausia pacifica Hansen among three populations in the North Pacific. Marine Ecology Progress Series 323:185–194.
  57. Greene, C.H., and A.J. Pershing. 2007. Climate drives sea change. Science 315:1,084–1,085, https://doi.org/10.1126/science.1136495.
  58. Greene, C.H., A.J. Pershing, A. Conversi, B. Planque, C. Hannah, D. Sameoto, E. Head, P.C. Smith, P.C. Reid, J. Jossi, and others. 2003. Trans-Atlantic responses of Calanus finmarchicus populations to basin-scale forcing associated with the North Atlantic Oscillation. Progress in Oceanography 58:301–312, https://doi.org/10.1016/j.pocean.2003.08.009.
  59. Hare, J.A., and J. Kane. 2012. Zooplankton of the Gulf of Maine: A changing perspective. Pp. 115–137 in Advancing Ecosystem Research for the Future of the Gulf of Maine. R. Stephenson, J. Annala, M. Hall-Arber, and J. Runge, eds, American Fisheries Society, Symposium vol. 79, Bethesda, MD.
  60. Haury, L.R., J.A. McGowan, and P.H. Wiebe. 1978. Patterns and processes in the time-space scales of plankton distribution. Pp. 277– 328 in Spatial Pattern in Plankton Communities. J.H. Steele, ed., Plenum Press, New York, NY.
  61. Heath, M.R., and R.G. Lough. 2007. A synthesis of large-scale patterns in the planktonic prey of larval and juvenile cod (Gadus morhua). Fisheries Oceanography 16:169–185, https://doi.org/10.1111/j.1365-2419.2006.00423.x.
  62. Hermann, A.J., S. Hinckley, E.L. Dobbins, D.B. Haidvogel, N.A. Bond, C. Mordy, N. Kachel, and P.J. Stabeno. 2009. Quantifying cross-shelf and vertical nutrient flux in the Coastal Gulf of Alaska with a spatially nested, coupled biophysical model. Deep Sea Research Part II 56:2,474–2,486, https://doi.org/10.1016/j.dsr2.2009.02.008.
  63. Hofmann, E.E., P.H. Wiebe, D.P. Costa, and J.J. Torres. 2004. An overview of the Southern Ocean Global Ocean Ecosystems Dynamics program. Deep Sea Research Part II 51:1,921–1,924, https://doi.org/10.1016/j.dsr2.2004.08.007.
  64. Hooff, R.C., and W.T. Peterson. 2006. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the northern California Current ecosystem. Limnology and Oceanography 51:2,607–2,620, https://doi.org/10.4319/lo.2006.51.6.2607.
  65. Huyer, A. 1977. Seasonal variation in temperature, salinity and density over the continental shelf off Oregon. Limnology and Oceanography 22:442–453, https://doi.org/10.4319/lo.1977.22.3.0442.
  66. Jaffe, J.S., M.D. Ohman, A. DeRobertis. 1999. Sonar estimates of daytime activity levels of Euphausia pacifica in Saanich Inlet. Canadian Journal of Fisheries and Aquatic Sciences 56:2,000–2,010, https://doi.org/10.1139/cjfas-56-11-2000.
  67. Ji, R., C. Davis, C. Chen, and R. Beardsley. 2009. Life history traits and spatiotemporal distributional patterns of copepod populations in the Gulf of Maine-Georges Bank region. Marine Ecology Progress Series 384:187–205, https://doi.org/10.3354/meps08032.
  68. Ji, R., C. Stegert, and C. Davis. 2012. Sensitivity of copepod populations to bottom-up and top-down forcing: A modeling study in the Gulf of Maine region. Journal of Plankton Research 35:66–79, https://doi.org/10.1093/plankt/fbs070.
  69. Johnson, C.L., A.W. Leising, J.A. Runge, E.J. Head, P. Pepin, S. Plourde, and E.G. Durbin. 2008. Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES Journal of Marine Science 65:339–350, https://doi.org/10.1093/icesjms/fsm171.
  70. Johnson, C.L., J.A. Runge, K.A. Curtis, E.G. Durbin, J.A. Hare, L.S. Incze, J.S. Link, G.D. Melvin, T.D. O’Brien, and L. Van Guelpen. 2011. Biodiversity and ecosystem function in the Gulf of Maine: Pattern and role of zooplankton and pelagic nekton. PloS One 6(1):e16491, https://doi.org/10.1371/journal.pone.0016491.
  71. Kane, J. 2007. Zooplankton abundance trends on Georges Bank, 1977–2004. ICES Journal of Marine Science 64:909–919, https://doi.org/10.1093/icesjms/fsm066.
  72. Keister, J.E., E. Di Lorenzo, C.A. Morgan, V. Combes, and W.T. Peterson. 2011. Zooplankton species composition is linked to ocean transport in the Northern California Current. Global Change Biology 17:2,498–2,511, https://doi.org/10.1111/j.1365-2486.2010.02383.x.
  73. Kristiansen, T., R.G. Lough, F.E. Werner, E.A. Broughton, and L.J. Buckley. 2009. Individual-based modeling of feeding ecology and prey selection of larval cod on Georges Bank. Marine Ecology Progress Series 376:227–243, https://doi.org/10.3354/meps07796.
  74. Ladd, C., P. Stabeno, and E.D. Cokelet. 2005. A note on cross-shelf exchange in the northern Gulf of Alaska. Deep Sea Research Part II 52:667–679, https://doi.org/10.1016/j.dsr2.2004.12.022.
  75. Laidig, T.E. 2010. Influence of ocean conditions on the timing of early life history events for blue rockfish (Sebastes mystinus) off California. Fishery Bulletin 108:442–449. Available online at: http://fishbull.noaa.gov/1084/laidig.pdf (accessed December 29, 2013).
  76. Largier, J.L., C.A. Lawrence, M. Roughan, D.M. Kaplan, E.P. Dever, C.E. Dorman, R.M. Kudela, S.M. Bollens, F.P. Wilkerson, R.C. Dugdale, and others. 2006. WEST: A northern California study of the role of wind-driven transport in the productivity of coastal plankton communities. Deep Sea Research Part II 53:2,833–2,849, https://doi.org/10.1016/j.dsr2.2006.08.018.
  77. Lavaniegos, B.E., and M.D. Ohman. 2003. Long-term changes in pelagic tunicates of the California Current. Deep Sea Research Part II 50:2,473–2,498, https://doi.org/10.1016/S0967-0645(03)00132-2.
  78. Lavaniegos, B.E., and M.D. Ohman. 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Progress in Oceanography 75:42–69, https://doi.org/10.1016/j.pocean.2007.07.002.
  79. Lawson, G.L., P.H. Wiebe, C.J. Ashjian, S.M. Gallager, C.S. Davis, and J.D. Warren. 2004. Acoustically-inferred zooplankton distribution in relation to hydrography west of the Antarctic Peninsula. Deep Sea Research Part II 51:2,041–2,072, https://doi.org/10.1016/j.dsr2.2004.07.022.
  80. Lawson, G.L., P.H. Wiebe, T.K. Stanton, and C.J. Ashjian. 2008. Euphausiid distribution along the western Antarctic Peninsula—Part B: Distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep Sea Research Part II 55:412–431, https://doi.org/10.1016/j.dsr2.2007.11.014.
  81. Legaard, K.R., and A.C. Thomas. 2006. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. Journal of Geophysical Research 111, C06032, https://doi.org/10.1029/2005JC003282.
  82. Li, X.W., D.J. McGillicuddy, E.G. Durbin, and P.H. Wiebe. 2006. Biological control of the vernal population increase of Calanus finmarchicus on Georges Bank. Deep Sea Research Part II 53:2,632–2,655, https://doi.org/10.1016/j.dsr2.2006.08.011.
  83. Lindsey, B.J. 2014. Bioenergetics and behavior of the krill Euphausia pacifica in the California Current System off the Oregon coast. PhD Dissertation, Oregon State University, Corvallis, OR. Available online at: http://hdl.handle.net/1957/42701 (accessed September 29, 2013).
  84. Lindsey, B.J., and H.P. Batchelder. 2011. Cross-shelf distribution of Euphausia pacifica in the Oregon coastal upwelling zone: Field evaluation of a differential transport hypothesis. Journal of Plankton Research 33:1,666–1,678, https://doi.org/10.1093/plankt/fbr073.
  85. Link, J.S., J.K.T. Brodziak, S.F. Edwards, W.J. Overholtz, D. Mountain, J.W. Jossi, T.D. Smith, and M.J. Fogarty. 2002. Marine ecosystem assessment in a fisheries management context. Canadian Journal of Fisheries and Aquatic Sciences 59:1,429–1,440, https://doi.org/10.1139/f02-115.
  86. Liu, H., M.J. Dagg, and S. Strom. 2005. Grazing by the calanoid copepod Neocalanus cristatus on the microbial food web in the coastal Gulf of Alaska. Journal of Plankton Research 27:647–662, https://doi.org/10.1093/plankt/fbi039.
  87. Liu, H., and R.R. Hopcroft. 2007. A comparison of seasonal growth and development of the copepods Calanus marshallae and C. pacificus in the northern Gulf of Alaska. Journal of Plankton Research 29:569–581, https://doi.org/10.1093/plankt/fbm039.
  88. Liu, H., and R.R. Hopcroft. 2008. Growth and development of Pseudocalanus spp. in the northern Gulf of Alaska. Journal of Plankton Research 30:923–935, https://doi.org/10.1093/plankt/fbn046.
  89. Liu, H., and W.T. Peterson. 2010. Seasonal and inter-annual variations in the abundance and biomass of Neocalanus plumchrus in continental slope waters off Oregon. Fisheries Oceanography 19:354–369, https://doi.org/10.1111/j.1365-2419.2010.00550.x.
  90. Logerwell, E.A., N. Mantua, P.W. Lawson, R.C. Francis, and V.N. Agostini. 2003. Tracking environmental processes in the coastal zone for understanding and predicting Oregon coho (Oncorhynchus kisutch) marine survival. Fisheries Oceanography 12:554–568, https://doi.org/10.1046/j.1365-2419.2003.00238.x.
  91. Mantua, N.J., S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78:1,069–1,079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
  92. Maps, F., J.A. Runge, A. Leising, A.J. Pershing, N.R. Record, S. Plourde, and J.J. Pierson. 2012. Modelling the timing and duration of dormancy in populations of Calanus finmarchicus from the Northwest Atlantic shelf. Journal of Plankton Research 34:36–54, https://doi.org/10.1093/plankt/fbr088.
  93. Marrari, M., K.L. Daly, and C. Hu. 2008. Spatial and temporal variability of SeaWiFS chlorophyll a distributions west of the Antarctic Peninsula: Implications for krill production. Deep Sea Research Part II 55:377–392, https://doi.org/10.1016/j.dsr2.2007.11.011.
  94. Marrari, M., K.L. Daly, A. Timonin, and T. Semenova. 2011a. The zooplankton of Marguerite Bay, western Antarctic Peninsula—Part I: Abundance, distribution, and population response to variability in environmental conditions. Deep Sea Research Part II 58:1,599–1,613, https://doi.org/10.1016/j.dsr2.2010.12.007.
  95. Marrari, M., K.L. Daly, A. Timonin, and T. Semenova. 2011b. The zooplankton of Marguerite Bay, western Antarctic Peninsula—Part II: Vertical distributions and habitat partitioning. Deep Sea Research Part II 58:1,614–1,629, https://doi.org/10.1016/j.dsr2.2010.12.006.
  96. MERCINA (Marine Ecosystem Responses to Climate in the North Atlantic Working Group). 2012. Recent arctic climate change and its remote forcing of Northwest Atlantic shelf ecosystems. Oceanography 25(3):208–213, https://doi.org/10.5670/oceanog.2012.64.
  97. Miller, C.B., D.R. Lynch, F. Carlotti, W.C. Gentleman, and C.V.W. Lewis. 1998. Coupling of an individual-based population dynamic model of Calanus finmarchicus to a circulation model for the Georges Bank region. Fisheries Oceanography 7:219–234, https://doi.org/10.1046/j.1365-2419.1998.00072.x.
  98. Mills, K.E., A.J. Pershing, C.J. Brown, Y. Chen, F.S. Chiang, D.S. Holland, S. Lehuta, J.A. Nye, J.C. Sun, A.C. Thomas, and R.A. Wahle. 2013. Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26(2):191–195, https://doi.org/10.5670/oceanog.2013.27.
  99. Moss, J.H., D.A. Beauchamp, A.D. Cross, K.W. Myers, E.V. Farley Jr., J.M. Murphy, and J.H. Helle. 2005. Evidence for size-selective mortality after the first summer of ocean growth by pink salmon. Transactions of the American Fisheries Society 134:1,313–1,322, https://doi.org/10.1577/T05-054.1.
  100. Mountain, D., P. Berrien, and J. Sibunka. 2003. Distribution, abundance and mortality of cod and haddock eggs and larvae on Georges Bank in 1995 and 1996. Marine Ecology Progress Series 263:247–260, https://doi.org/10.3354/meps263247.
  101. Mountain, D., J. Green, J. Sibunka, and D. Johnson. 2008. Growth and mortality of Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus eggs and larvae on Georges Bank, 1995 to 1999. Marine Ecology Progress Series 353:225–242, https://doi.org/10.3354/meps07176.
  102. Mountain, D.G., and J. Kane. 2010. Major changes in the Georges Bank ecosystem, 1980s to the 1990s. Marine Ecology Progress Series 398:81–91, https://doi.org/10.3354/meps08323.
  103. Napp, J.M., R.R. Hopcroft, C.T. Baier, and C. Clarke. 2005. Distribution and species-specific egg production of Pseudocalanus in the Gulf of Alaska. Journal of Plankton Research 27:415–426, https://doi.org/10.1093/plankt/fbi015.
  104. Norrbin, M.F., C.S. Davis, and S.M. Gallager. 1996. Differences in fine-scale structure and composition of zooplankton between mixed and stratified regions of Georges Bank. Deep Sea Research Part II 43:1,905–1,924, https://doi.org/10.1016/S0967-0645(96)00046-X.
  105. Ohman, M.D., E.G. Durbin, J.A. Runge, B.K. Sullivan, and D.B. Field. 2008. Relationship of predation potential to mortality of Calanus finmarchicus on Georges Bank, Northwest Atlantic. Limnology and Oceanography 53:1,643–1,655, https://doi.org/10.4319/lo.2008.53.4.1643.
  106. Ohman, M.D., K. Eiane, E.G. Durbin, J.A. Runge, and H.-J. Hirche. 2004. A comparative study of Calanus finmarchicus mortality patterns at five localities in the North Atlantic. ICES Journal of Marine Science 61:687–697, https://doi.org/10.1016/j.icesjms.2004.03.016.
  107. Ohman, M.D., and H.-J. Hirche. 2001. Density-dependent mortality in an oceanic copepod population. Nature 412:638–641, https://doi.org/10.1038/35088068.
  108. Ohman, M.D., and C.-H. Hsieh. 2008. Spatial differences in mortality of Calanus pacificus within the California Current System. Journal of Plankton Research 30:359–366, https://doi.org/10.1093/plankt/fbm110.
  109. Ohman, M.D., J.A. Runge, E.G. Durbin, D.B. Field, and B. Niehoff. 2002. On birth and death in the sea. Hydrobiologia 480:55–68, https://doi.org/10.1023/A:1021228900786.
  110. Okkonen, S.R., T.J. Weingartner, S.L. Danielson, D.L. Musgrave, and G.M. Schmidt. 2003. Satellite and hydrographic observations of eddy-induced shelf-slope exchange in the northwestern Gulf of Alaska. Journal of Geophysical Research 108, 3033, https://doi.org/10.1029/2002JC001342.
  111. Pakhomov, E.A., A. Atkinson, B. Meyer, B. Oettle, and U. Bathmann. 2004. Daily rations and growth of larval krill Euphausia superba in the Eastern Bellingshausen Sea during austral autumn. Deep Sea Research Part II 51:2,185–2,198, https://doi.org/10.1016/j.dsr2.2004.08.003.
  112. Peck, M.A., and M. Hufnagl. 2012. Can IBMs tell us why most larvae die in the sea? Model sensitivities and scenarios reveal research needs. Journal of Marine Systems 93:77–93, https://doi.org/10.1016/j.jmarsys.2011.08.005.
  113. Peterson, W.T. 2009. Copepod species richness as an indicator of long-term changes in the coastal ecosystem of the Northern California Current. CalCOFI Reports 50:73–81. Available online at: http://calcofi.org/publications/calcofireports/v50/73-81_Peterson.pdf (accessed December 29, 2013).
  114. Peterson, W.T., and R.C. Hooff. 2005. Long term variations in hydrography and zooplankton in coastal waters of the northern California Current off Newport, Oregon. Pp. 36–44 in Proceedings of International Symposium on Longterm Variations in Coastal Environments and Ecosystems. September 27–28, 2004, Matsuyama, Japan.
  115. Peterson, W.T., and J.E. Keister. 2003. Interannual variability in copepod community composition at a coastal station in the northern California Current: A multivariate approach. Deep Sea Research Part II 50:2,499–2,517, https://doi.org/10.1016/S0967-0645(03)00130-9.
  116. Peterson, W.T., and C.B. Miller. 1977. Seasonal cycle of zooplankton abundance and species composition along the central Oregon coast. Fishery Bulletin 75:717–724. Available online at: http://fishbull.noaa.gov/75-4/peterson.pdf (accessed December 29, 2013).
  117. Peterson, W.T., and F.B. Schwing. 2003. A new climate regime in northeast Pacific ecosystems. Geophysical Research Letters 30, 1896, https://doi.org/10.1029/2003GL017528.
  118. Pinchuk, A.I., K.O. Coyle, and R.R. Hopcroft. 2008. Climate-related variability in abundance and reproduction of euphausiids in the northern Gulf of Alaska in 1998–2003. Progress in Oceanography 77:203–216, https://doi.org/10.1016/j.pocean.2008.03.012.
  119. Pinchuk, A.I., and R.R. Hopcroft. 2006. Egg production and early development of Thysanoessa inermis and Euphausia pacifica (Crustacea: Euphausiacea) in the northern Gulf of Alaska. Journal of Experimental Marine Biology and Ecology 332:206–215, https://doi.org/10.1016/j.jembe.2005.11.019.
  120. Pinchuk, A.I., and R.R. Hopcroft. 2007. Seasonal variations in the growth rates of euphausiids (Thysanoessa inermis, T. spinifera, and Euphausia pacifica) from the northern Gulf of Alaska. Marine Biology 151:257–269, https://doi.org/10.1007/s00227-006-0483-1.
  121. Piñones, A., E.E. Hofmann, K.L. Daly, M.S. Dinniman, and J.M. Klinck. 2013. Modeling the remote and local connectivity of Antarctic krill populations along the western Antarctic Peninsula. Marine Ecology Progress Series 481:69–92, https://doi.org/10.3354/meps10256.
  122. Reese, D.C., T.W. Miller, and R.D. Brodeur. 2005. Community structure of near-surface zooplankton in the Northern California Current in relation to oceanographic conditions. Deep Sea Research Part II 52:29–50, https://doi.org/10.1016/j.dsr2.2004.09.027.
  123. Ressler, P.H., R.D. Brodeur, W.T. Peterson, S.D. Pierce, P.M. Vance, A. Roestad, and J.A. Barth. 2005. The spatial distribution of euphausiid aggregations in the Northern California Current during August 2000. Deep Sea Research Part II 52:89–108, https://doi.org/10.1016/j.dsr2.2004.09.032.
  124. Reygondeau, G., and G. Beaugrand. 2011. Future climate-driven shifts in distribution of Calanus finmarchicus. Global Change Biology 17:756–766, https://doi.org/10.1111/j.1365-2486.2010.02310.x.
  125. Roemmich, D., and J. McGowan. 1995. Climatic warming and the decline of zooplankton in the California Current. Science 267:1,324–1,326, https://doi.org/10.1126/science.267.5202.1324.
  126. Royer, T.C. 1998. Coastal processes in the northern North Pacific. Pp. 395–414 in The Sea. A.R. Robinson and K.H. Brink, eds, John Wiley and Sons, New York.
  127. Runge, J.A., S. Plourde, P. Joly, B. Niehoff, and E. Durbin. 2006. Characteristics of egg production of the planktonic copepod, Calanus finmarchicus, on Georges Bank: 1994–1999. Deep Sea Research Part II 53:2,618–2,631, https://doi.org/10.1016/j.dsr2.2006.08.010.
  128. Sambrotto, R.N., and C.J. Lorenzen. 1986. Phytoplankton and primary production. Pp. 249–282 in The Gulf of Alaska Physical Environment and Biological Resources. D.W. Hood and S.T. Zimmerman, eds, NOAA Ocean Assessments Division, Alaska Office, Washington, DC.
  129. Schroeder, I.D., W.J. Sydeman, N. Sarkar, S.A. Thompson, S.J. Bograd, and F.B. Schwing. 2009. Winter pre-conditioning of seabird phenology in the California Current. Marine Ecology Progress Series 393:211–223, https://doi.org/10.3354/meps08103.
  130. Shaw, C.T., L. Feinberg, and W. Peterson. 2010. Growth of Euphausia pacifica in the upwelling zone off the Oregon coast. Deep Sea Research Part II 57:584–593, https://doi.org/10.1016/j.dsr2.2009.10.008.
  131. Shearman, R.K., and S.J. Lentz. 2010. Long-term sea surface temperature variability along the US East Coast. Journal of Physical Oceanography 40:1,004–1,017, https://doi.org/10.1175/2009JPO4300.1.
  132. Smiles, M.C., and W.G. Pearcy. 1971. Size, structure and growth of Euphausia pacifica off the Oregon coast. Fishery Bulletin 69:79–86.
  133. Stabeno, P.J., N.A. Bond, A.J. Hermann, N.B. Kachel, C.W. Mordy, and J.E. Overland. 2004. Meteorology and oceanography of the Northern Gulf of Alaska. Continental Shelf Research 24:859–897, https://doi.org/10.1016/j.csr.2004.02.007.
  134. Stammerjohn, S., R. Massom, D. Rind, and D. Martinson. 2012. Regions of rapid sea ice change: An interhemispheric seasonal comparison. Geophysical Research Letters 39, L06501, https://doi.org/10.1029/2012GL050874.
  135. Steele, J.H., and E.W. Henderson. 1992. The role of predation in plankton models. Journal of Plankton Research 14:157–172, https://doi.org/10.1093/plankt/14.1.157.
  136. Stegert, C., R. Ji, N. Li, and C. Davis. 2012. Processes controlling seasonality and spatial distribution of Centropages typicus: A modeling study in the Gulf of Maine/Georges Bank region. Journal of Plankton Research 34:18–35, https://doi.org/10.1093/plankt/fbr084.
  137. Strom, S.L., E.L. Macri, and M.B. Olson. 2007. Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top-down control of phytoplankton. Limnology and Oceanography 52:1,480–1,494, https://doi.org/10.4319/lo.2007.52.4.1480.
  138. Strom, S.L., M.B. Olson, E.L. Macri, and C.W. Mordy. 2006. Cross-shelf gradients in phytoplankton community structure, nutrient utilization, and growth rate in the coastal Gulf of Alaska. Marine Ecology Progress Series 328:75–92, https://doi.org/10.3354/meps328075.
  139. Strub, P.T., H.P. Batchelder, and T.J. Weingartner. 2002. US GLOBEC Northeast Pacific Program: Overview. Oceanography 15(2):30–35, https://doi.org/10.5670/oceanog.2002.19.
  140. Swartzman, G., B. Hickey, P.M. Kosro, and C. Wilson. 2005. Poleward and equatorward currents in the Pacific Eastern Boundary Current in summer 1995 and 1998 and their relationship to the distribution of euphausiids. Deep Sea Research Part II 52:73–88, https://doi.org/10.1016/j.dsr2.2004.09.028.
  141. Turner, E., D.B. Haidvogel, E.E. Hofmann, H.P. Batchelder, M.J. Fogarty, and T. Powell. 2013. US GLOBEC: Program goals, approaches, and advances. Oceanography 26(4):12–21, https://doi.org/10.5670/oceanog.2013.72.
  142. Vaughan, D.G., and C.S.M. Doake. 1996. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379:328–331, https://doi.org/10.1038/379328a0.
  143. Werner, F.E., B.R. MacKenzie, R.I. Perry, R.G. Lough, C.E. Naimie, B.O. Blanton, and J.A. Quinlan. 2001. Larval trophodynamics, turbulence, and drift on Georges Bank: A sensitivity analysis of cod and haddock. Scientia Marina 65(Suppl. 1): 99–115.
  144. Werner, F.E., R.I. Perry, R.G. Lough, and C.E. Naimie. 1996. Trophodynamic and advective influences on Georges Bank larval cod and haddock. Deep Sea Research Part II 43:1,793–1,822, https://doi.org/10.1016/S0967-0645(96)00042-2.
  145. Wiebe, P.H., C.J. Ashjian, G.L. Lawson, A. Piñones, and N.J. Copley. 2011. Horizontal and vertical distribution of euphausiid species on the western Antarctic Peninsula US GLOBEC Southern Ocean study site. Deep Sea Research Part II 58:1,630–1,651, https://doi.org/10.1016/j.dsr2.2010.11.015.
  146. Wiebe, P.H., D.G. Mountain, T.K. Stanton, C.H. Greene, G. Lough, S. Kaartvedt, J. Dawson, and N. Copley. 1996. Acoustical study of the spatial distribution of plankton on Georges Bank and the relationship between volume backscattering strength and the taxonomic composition of the plankton. Deep Sea Research Part II 43:1,971–2,001, https://doi.org/10.1016/S0967-0645(96)00039-2.
  147. Wood, S.N. 1994. Obtaining birth and mortality patterns from structured population trajectories. Ecological Monographs 64:23–44, https://doi.org/10.2307/2937054.
  148. Wu, D. 2008. Zooplankton distribution, transport and population dynamics in the California Current off Oregon during the 2002 upwelling season. PhD Dissertation, University of Massachusetts, Boston, MA.
  149. Young, K.V., J.E. Dower, and P. Pepin. 2009. A hierarchical analysis of the spatial distribution of larval fish prey. Journal of Plankton Research 31:687–700, https://doi.org/10.1093/plankt/fbp017.
  150. Zhou, M., and M.E. Huntley. 1997. Population dynamics theory of plankton based on biomass spectra. Marine Ecology Progress Series 159:61–73, https://doi.org/10.3354/meps159061.
  151. Zhou, M., Y. Zhu, and J.O. Peterson. 2004. In situ growth and mortality of mesozooplankton during the austral fall and winter in Marguerite Bay and its vicinity. Progress in Oceanography 51:17–19, https://doi.org/10.1016/j.dsr2.2004.07.008.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.