Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 01

View Issue TOC
Volume 25, No. 1
Pages 218 - 233

OpenAccess

Chemoautotrophy at Deep-Sea Vents: Past, Present, and Future

By Stefan M. Sievert  and Costantino Vetriani  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Chemolithoautotrophic microorganisms are at the nexus of hydrothermal systems by effectively transferring the energy from the geothermal source to the higher trophic levels. While the validity of this conceptual framework is well established at this point, there are still significant gaps in our understanding of the microbiology and biogeochemistry of deep-sea hydrothermal systems. Important questions in this regard are: (1) How much, at what rates, and where in the system is organic carbon being produced? (2) What are the dominant autotrophs, where do they reside, and what is the relative importance of free-swimming, biofilm-forming, and symbiotic microbes? (3) Which metabolic pathways are they using to conserve energy and to fix carbon? (4) How does community-wide gene expression in fluid and biofilm communities compare? and (5) How efficiently is the energy being utilized, transformed into biomass, and transferred to higher trophic levels? In particular, there is currently a notable lack of process-oriented studies that would allow an assessment of the larger role of these ecosystems in global biogeochemical cycles. By combining the presently available powerful “omic” and single-cell tools with thermodynamic modeling, experimental approaches, and new in situ instrumentation to measure rates and concentrations, it is now possible to bring our understanding of these truly fascinating ecosystems to a new level and to place them in a quantitative framework and thus a larger global context.

Citation

Sievert, S.M., and C. Vetriani. 2012. Chemoautotrophy at deep-sea vents: Past, present, and future. Oceanography 25(1):218–233, https://doi.org/10.5670/oceanog.2012.21.

References
    Alain, K., N. Callac, M. Guegan, F. Lesongeur, P. Crassous, M.A. Cambon-Bonavita, J. Querellou, and D. Prieur. 2009. Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 59:1,310–1,315, https://doi.org/10.1099/ijs.0.005454-0.
  1. Alain, K., A. Postec, E. Grinsard, F. Lesongeur, D. Prieur, and A. Godfroy. 2010. Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 60:33–38, https://doi.org/10.1099/ijs.0.009449-0.
  2. Alain, K., J. Querellou, F. Lesongeur, P. Pignet, P. Crassous, G. Raguenes, V. Cueff, and M.A. Cambon-Bonavita. 2002. Caminibacter hydrogeniphilus gen. nov., sp nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 52:1,317–1,323, https://doi.org/10.1099/ijs.0.02195-0.
  3. Alain, K., S. Rolland, P. Crassous, F. Lesongeur, M. Zbinden, C. Le Gall, A. Godfroy, A. Page, S.K. Juniper, M.A. Cambon-Bonavita, and others. 2003. Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium. Extremophiles 7:361–370.
  4. Alain, K., M. Zbinden, N. Le Bris, F. Lesongeur, J. Querellou, F. Gaill, and M.A. Cambon-Bonavita. 2004. Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environmental Microbiology 6:227–241, https://doi.org/10.1111/j.1462-2920.2003.00557.x.
  5. Amend, J.P., and E.L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiology Review 25:175–243, https://doi.org/10.1111/j.1574-6976.2001.tb00576.x.
  6. Amend, J.P., T.M. McCollom, M. Hentscher, and W. Bach. 2011. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochimica et Cosmochimica Acta 75:5,736–5,748, https://doi.org/10.1016/j.gca.2011.07.041.
  7. Bach, W., K.J. Edwards, J.M. Hayes, J.A. Huber, S.M. Sievert, and M.L. Sogin. 2006. Energy in the dark: Fuel for life in the deep ocean and beyond. Eos, Transactions, American Geophysical Union 87(7):73, https://doi.org/10.1029/2006EO070002.
  8. Blöchl, E., R. Rachel, S. Burggraf, D. Hafenbradl, H.W. Jannasch, and K.O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21, https://doi.org/10.1007/s007920050010.
  9. Brazelton, W.J., and J.A. Baross. 2009. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME Journal 3:1,420–1,424, https://doi.org/10.1038/ismej.2009.79.
  10. Brazelton, W.J., and J.A. Baross. 2010. Metagenomic comparison of two Thiomicrospira lineages inhabiting contrasting deep-sea hydrothermal environments. PLoS One 5:8, https://doi.org/10.1371/journal.pone.0013530.
  11. Butterfield, D.A., K.K. Roe, M.D. Lilley, J.A. Huber, J.A. Baross, R.W. Embley, and G.J. Massoth. 2004. Mixing, reaction and microbial activity in the sub-seafloor revealed by temporal and spatial variation in diffuse flow vents at Axial Volcano. Pp. 269–289 in Subseafloor Biosphere at Mid-Oceanic Ridges. W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds, Geophysical Monograph Series, vol. 144, American Geophysical Union, Washington, DC.
  12. Campbell, B.C., A.S. Engel, M.L. Porter, and K. Takai. 2006. The versatile ε−proteobacteria: Key players in sulphidic habitats. Nature Reviews Microbiology 4:458–468, https://doi.org/10.1038/nrmicro1414.
  13. Campbell, B.J., C. Jeanthon, J.E. Kostka, G.W. Luther III, and S.C. Cary. 2001. Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Applied and Environmental Microbiology 67:4,566–4,572, https://doi.org/10.1128/AEM.67.10.4566-4572.2001.
  14. Campbell, B.J., J.L. Smith, T.E. Hanson, M.G. Klotz, L.Y. Stein, C.K. Lee, D. Wu, J.M. Robinson, H.M. Khouri, J.A. Eisen, and S.C. Cary. 2009. Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genetics 5:e1000362, https://doi.org/10.1371/journal.pgen.1000362.
  15. Corliss, J.B., J. Dymond, L.I. Gordon, J.M. Edmond, R.P. von Herzen, R.D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane, and T.H. von Andel. 1979. Submarine thermal springs on the Galapagos Rift. Science 203:1,073–1,083, https://doi.org/10.1126/science.203.4385.1073.
  16. Covert, M.W., E.M. Knight, J.L. Reed, M.J. Herrgard, and B.O. Palsson. 2004. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–96, https://doi.org/10.1038/nature02456.
  17. Covert, M.W., C.H. Schilling, I. Famili, J.S. Edwards, I.I. Goryanin, E. Selkov, and B.O. Palsson. 2001. Metabolic modeling of microbial strains in silico. Trends in Biochemical Sciences 26:179–186, https://doi.org/10.1016/S0968-0004(00)01754-0.
  18. Crespo-Medina, M., A.D. Chatziefthimiou, N.S. Bloom, G.W. Luther, J.R. Reinfelder, C. Vetriani, and T. Barkay. 2009a. Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep-sea hydrothermal vents. Limnology and Oceanography 54:41–49, https://doi.org/10.4319/lo.2009.54.1.0041.
  19. Crespo-Medina, M., A. Chatziefthimiou, R. Cruz-Matos, I. Pérez-Rodriguez, T. Barkay, R.A. Lutz, V. Starovoytov, and C. Vetriani. 2009b. Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera. International Journal of Systematic and Evolutionary Microbiology 59:1,497–1,503, https://doi.org/10.1099/ijs.0.005058-0.
  20. DeLong, E.F. 2009. The microbial ocean from genomes to biomes. Nature 459:200–206, https://doi.org/10.1038/nature08059.
  21. DeLong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N.-U. Frigaard, A. Martinez, M.B. Sulivan, R. Edwards, B. Rodriguez Brito, and others. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503, https://doi.org/10.1126/science.1120250.
  22. Durand, P., A.-L. Reysenbach, D. Prieur, and N.R. Pace. 1993. Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in the Fiji Basin. Archives of Microbiology 159:39–44.
  23. Eloe, E.A., D.W. Fadrosh, M. Novotny, L.Z. Allen, M. Kim, M.J. Lombardo, J. Yee-Greenbaum, S. Yooseph, E.E. Allen, R. Lasken, and others. 2011. Going deeper: Metagenome of a hadopelagic microbial community. PLoS One 6(5):e20388, https://doi.org/10.1371/journal.pone.0020388.
  24. Feist, A.M., M.J. Herrgard, I. Thiele, J.L. Reed, and B.O. Palsson. 2009. Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology 7:129–143, https://doi.org/10.1038/nrmicro1949.
  25. Flores, G.E., J.H. Campbell, J.D. Kirshtein, J. Meneghin, M. Podar, J.I. Steinberg, J.S. Seewald, M.K. Tivey, M.A. Voytek, Z.K. Yang, and A.L. Reysenbach. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environmental Microbiology 13:2,158–2,171, https://doi.org/10.1111/j.1462-2920.2011.02463.x.
  26. Foustoukos, D.I., J.L. Houghton, W.E. Seyfried Jr., S.M. Sievert, and G.D. Cody. 2011. Kinetics of H2-O2-H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions. Geochemica et Cosmochimica Acta 75:1,594–1,607, https://doi.org/10.1016/j.gca.2010.12.020.
  27. Gardebrecht, A., S. Markert, S.M. Sievert, H. Felbeck, A. Thürmer, D. Albrecht, A. Wollherr, J. Kabisch, N. Le Bris, R. Lehmann, and others. 2011. Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. The ISME Journal, https://doi.org/10.1038/ismej.2011.137.
  28. Gilbert, J.A., and C.L. Dupont. 2011. Microbial metagenomics: Beyond the genome. Annual Review in Marine Science 3:347–371, https://doi.org/10.1146/annurev-marine-120709-142811.
  29. Giovannelli, D., S. Ferriera, J. Johnson, S. Kravitz, I. Pérez-Rodriguez, J. Ricci, C. O’Brien, J.W. Voordeckers, E. Bini, and C. Vetriani. 2011. Draft genome sequence of Caminibacter mediatlanticus strain TB-2T, an epsiloproteobacterium isolated from a deep-sea hydrothermal vent. Standards in Genomic Science 5:135–143, https://doi.org/10.4056/sigs.2094859.
  30. Götz, D., A. Banta, T.J. Beveridge, A.I. Rushdi, B.R.T. Simoneit, and A. Reysenbach. 2002. Persephonella marina gen. nov., sp nov. and Persephonella guaymasensis sp nov., two novel, thermophilic, hydrogen- oxidizing microaerophiles from deep-sea hydrothermal vents. International Journal of Systematic and Evolutionary Microbiology 52:1,349–1,359, https://doi.org/10.1099/ijs.0.02126-0.
  31. Grzymski, J.J., A.E. Murray, B.J. Campbell, M. Kaplarevic, G.R. Gao, C. Lee, R. Daniel, A. Ghadiri, R.A. Feldman, and S.C. Cary. 2008. Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. Proceedings of the National Academy of Sciences of the United States of America 105:17,516–17,521, https://doi.org/10.1073/pnas.0802782105.
  32. Holden, J.F., J.A. Breier, K.L. Rogers, M.D. Schulte, and B.M. Toner. 2012. Biogeochemical processes at hydrothermal vents: Microbes and minerals, bioenergetics, and carbon fluxes. Oceanography 25(1):196–208, https://doi.org/10.5670/oceanog.2012.18.
  33. Houghton, J.L., and W.E. Seyfried Jr. 2010. An experimental and theoretical approach to determining linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys. Geobiology 8:457–470, https://doi.org/10.1111/j.1472-4669.2010.00255.x.
  34. Houghton, J.L., W.E. Seyfried Jr., A.B. Banta, and A.-L. Reysenbach. 2007. Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures. Extremophiles 11:371–382, https://doi.org/10.1007/s00792-006-0049-7.
  35. Huber, H., S. Burggraf, T. Mayer, I. Wyschkony, R. Rachel, and K.O. Stetter. 2000. Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp nov and Ignicoccus pacificus sp nov. International Journal of Systematic and Evolutionary Microbiology 6:2,093–2,100.
  36. Huber, J.A., D.A. Butterfield, and J.A. Baross. 2003. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiology Ecology 43:393–409, https://doi.org/10.1111/j.1574-6941.2003.tb01080.x.
  37. Huber, H., H.W. Jannasch, R. Rachel, T. Fuchs, and K.O. Stetter. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Systematic and Applied Microbiology 20:374–380, https://doi.org/10.1016/S0723-2020(97)80005-7.
  38. Huber, J.A., D.B. Mark Welch, H.G. Morrison, S.M. Huse, P.R. Neal, D.A. Butterfield, and M.L. Sogin. 2007. Microbial population structures in the deep marine biosphere. Science 318:97–100, https://doi.org/10.1126/science.1146689.
  39. Hügler, M., and S.M. Sievert. 2011. Beyond the Calvin Cycle: Autotrophic carbon fixation in the ocean. Annual Review of Marine Science 3:261–289, https://doi.org/10.1146/annurev-marine-120709-142712.
  40. Hügler, M., J.M. Petersen, N. Dubilier, J.F. Imhoff, and S.M. Sievert. 2011. Pathways of carbon and energy metabolism of the epibiotic community associated with the deep-sea hydrothermal vent shrimp Rimicaris exoculata. PLoS One 6(1):e16018, https://doi.org/10.1371/journal.pone.0016018.
  41. Inagaki, F., K. Takai, H. Kobayashi, K.H. Nealson, and K. Horikoshi. 2003. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. International Journal of Systematic and Evolutionary Microbiology 53:1,801–1,805, https://doi.org/10.1099/ijs.0.02682-0.
  42. Inagaki, F., K. Takai, K.H. Nealson, and K. Horikoshi. 2004. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. International Journal of Systematic and Evolutionary Microbiology 54:1,477–1,482, https://doi.org/10.1099/ijs.0.03042-0.
  43. Jannasch, H.W. 1985. The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proceedings of the Royal Society of London B 225:277–297, https://doi.org/10.1098/rspb.1985.0062.
  44. Jannasch, H.W. 1995. Microbial interactions with hydrothermal fluids. Pp. 273–296 in Seafloor Hydrothermal Systems. S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thomson, eds, Geophysical Monograph Series, vol. 91, American Geophysical Union, Washington, DC.
  45. Jannasch, H.W., and M.J. Mottl. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725, https://doi.org/10.1126/science.229.4715.717.
  46. Jannasch, H.W., and C.D. Taylor. 1984. Deep-sea microbiology. Annual Review of Microbiology 38:487–514, https://doi.org/10.1146/annurev.mi.38.100184.002415.
  47. Jannasch, H.W., and C.O. Wirsen. 1979. Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29:592–598.
  48. Jannasch, H.W., and C.O. Wirsen. 1981. Morphological survey of microbial mats near deep-sea thermal vents. Applied and Environmental Microbiology 41:528–538.
  49. Jannasch, H.W., C.O. Wirsen, D.C. Nelson, and L.A. Robertson. 1985. Thiomicrospira crunogena sp. nov., a colorless sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. International Journal of Systematic Bacteriology 35:422–424, https://doi.org/10.1099/00207713-35-4-422.
  50. Jeanthon, C., S. L’Haridon, V. Cueff, A. Banta, A.L. Reysenbach, and D. Prieur. 2002. Thermodesulfobacterium hydrogeniphilum sp nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. International Journal of Systematic and Evolutionary Microbiology 52:765–772, https://doi.org/10.1099/ijs.0.02025-0.
  51. Johnson, M.R., C.I. Montero, S.B. Conners, K.R. Shockley, S.L. Bridger, and R.M. Kelly. 2005. Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Molecular Microbiology 55:664–674, https://doi.org/10.1111/j.1365-2958.2004.04419.x.
  52. Karl, D.M. 1995. Ecology of free-living, hydrothermal vent microbial communities. Pp. 35–124 in Microbiology of Deep-Sea Hydrothermal Vents. D.M. Karl, ed., CRC Press, Boca Raton, FL.
  53. Kashefi, K., and D.R. Lovley. 2003. Extending the upper temperature limit for life. Science 301:934, https://doi.org/10.1126/science.1086823.
  54. Kashefi, K., J.M. Tor, D.E. Holmes, C.V. Gaw Van Praagh, A.L. Reysenbach, and D.R. Lovley. 2002. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. International Journal of Systematic and Evolutionary Microbiology 52:719–728, https://doi.org/10.1099/ijs.0.01953-0.
  55. Kelley, D.S., J.A. Baross, and J.R. Delaney. 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annual Review of Earth and Planetary Sciences 30:385–491, https://doi.org/10.1146/annurev.earth.30.091201.141331.
  56. Kurr, M., R. Huber, H. Konig, H.W. Jannasch, H. Fricke, A. Trincone, J.K. Kristjansson, and K.O. Stetter. 1991. Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Archives of Microbiology 156:239–247, https://doi.org/10.1007/BF00262992.
  57. L’Haridon, S., V. Cilia, P. Messner, G. Raguenes, A. Gambacorta, U.B. Sleytr, D. Prieur, and C. Jeanthon. 1998. Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 48:701–711, https://doi.org/10.1099/00207713-48-3-701.
  58. L’Haridon, S., A.L. Reysenbach, A. Banta, P. Messner, P. Schumann, E. Stackebrandt, and C. Jeanthon. 2003. Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. International Journal of Systematic and Evolutionary Microbiology 53:1,931–1,935, https://doi.org/10.1099/ijs.0.02700-0.
  59. L’Haridon, S., A.L. Reysenbach, B.J. Tindall, P. Schonheit, A. Banta, U. Johnsen, P. Schumann, A. Gambacorta, E. Stackebrandt, and C. Jeanthon. 2006. Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. International Journal of Systematic and Evolutionary Microbiology 56:2,843–2,852, https://doi.org/10.1099/ijs.0.63994-0.
  60. Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Research 24:857–858, https://doi.org/10.1016/0146-6291(77)90478-7.
  61. López-García, P., S. Duperron, P. Philippot, J. Foriel, J. Susini, and D. Moreira. 2003. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environmental Microbiology 5:961–976, https://doi.org/10.1046/j.1462-2920.2003.00495.x.
  62. Markert, S., C. Arndt, H. Felbeck, D. Becher, S.M. Sievert, M. Hügler, D. Albrecht, J. Robidart, S. Bench, R.A. Feldman, and others. 2007. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315:247–250, https://doi.org/10.1126/science.1132913.
  63. Markert, S., A. Gardebrecht, H. Felbeck, S.M. Sievert, J. Klose, D. Becher, D. Albrecht, A. Thurmer, R. Daniel, M. Kleiner, and others. 2011. Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 11:3,106–3,117, https://doi.org/10.1002/pmic.201100059.
  64. McCarren, J., J.W. Becker, D.J. Repeta, Y.M. Shi, C.R. Young, R.R. Malmstrom, S.W. Chisholm, and E.F. DeLong. 2010. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proceedings of the National Academy of Sciences of the United States of America 107:16,420–16,427, https://doi.org/10.1073/pnas.1010732107.
  65. McCollom, T.M., and E.L. Shock. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta 61:4,375–4,391, https://doi.org/10.1016/S0016-7037(97)00241-X.
  66. Miroshnichenko, M.L., S. L’Haridon, P. Schumann, S. Spring, E.A. Bonch-Osmolovskaya, C. Jeanthon, and E. Stackebrandt. 2004. Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 54:41–45, https://doi.org/10.1099/ijs.0.02753-0.
  67. Miroshnichenko, M.L., N.A. Kostrikina, S. L’Haridon, C. Jeanthon, H. Hippe, E. Stackebrandt, and E.A. Bonch-Osmolovskaya. 2002. Nautilia lithotrophica gen. nov., sp nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep- sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 52:1,299–1,304, https://doi.org/10.1099/ijs.0.02139-0.
  68. Miroshnichenko, M.L., A.I. Slobodkin, N.A. Kostrikina, S. L’Haridon, O. Nercessian, S. Spring, E. Stackebrandt, E.A. Bonch-Osmolovskaya, and C. Jeanthon. 2003. Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. International Journal of Systematic and Evolutionary Microbiology 53:1,637–1,641, https://doi.org/10.1099/ijs.0.02673-0.
  69. Mori, K., K. Suzuki, T. Urabe, M. Sugihara, K. Tanaka, M. Hamada, and S. Hanada. 2011. Thioprofundum hispidum sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing gammaproteobacterium isolated from the hydrothermal field on Suiyo Seamount, and proposal of Thioalkalispiraceae fam. nov. in the order Chromatiales. International Journal of Systematic and Evolutionary Microbiology 61:2,412–2,418, https://doi.org/10.1099/ijs.0.026963-0.
  70. Morris, R.M., B.L. Nunn, C. Frazar, D.R. Goodlett, Y.S. Ting, and G. Rocap. 2010. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. The ISME Journal 4:673–685, https://doi.org/10.1038/ismej.2010.4.
  71. Moussard, H., S. L’Haridon, B.J. Tindall, A. Banta, P. Schumann, E. Stackebrandt, A.L. Reysenbach, and C. Jeanthon. 2004. Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. International Journal of Systematic and Evolutionary Microbiology 54:227–233, https://doi.org/10.1099/ijs.0.02669-0.
  72. Musat, N., H. Halm, B. Winterholler, P. Hoppe, S. Peduzzi, F. Hillion, F. Horreard, R. Amann, B.B. Jørgensen, and M.M.M. Kuypers. 2008. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America 105:17,861–17,866, https://doi.org/10.1073/pnas.0809329105.
  73. Nakagawa, S., and K. Takai. 2008. Deep-sea vent chemoautotrophs: Diversity, biochemistry, and ecological significance. FEMS Microbiology Ecology 65:1–14, https://doi.org/10.1111/j.1574-6941.2008.00502.x.
  74. Nakagawa, S., F. Inagaki, K. Takai, K. Horikoshi, and Y. Sako. 2005a. Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ε-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. International Journal of Systematic and Evolutionary Microbiology 55:599–605, https://doi.org/10.1099/ijs.0.63351-0.
  75. Nakagawa, S., K. Takai, K. Horikoshi, and Y. Sako. 2003. Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. International Journal of Systematic and Evolutionary Microbiology 53:863–869, https://doi.org/10.1099/ijs.0.02505-0.
  76. Nakagawa, S., K. Takai, F. Inagaki, K. Horikoshi, and Y. Sako. 2005b. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. International Journal of Systematic and Evolutionary Microbiology 55:925–933, https://doi.org/10.1099/ijs.0.63480-0.
  77. Nakagawa, S., Y. Takaki, S. Shimamura, A.L. Reysenbach, K. Takai, and K. Horikoshi. 2007. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens. Proceedings of the National Academy of Sciences of the United States of America 104:12,146–12,150, https://doi.org/10.1073/pnas.0700687104.
  78. Nakamura, R., T. Takashima, S. Kato, K. Takai, M. Yamamoto, and K. Hashimoto. 2010. Electrical current generation across a black smoker chimney. Angewandte Chemie International Edition 49:7,692–7,694, https://doi.org/10.1002/anie.201003311.
  79. Nunoura, T., M. Miyazaki, Y. Suzuki, K. Takai, and K. Horikoshi. 2008a. Hydrogenivirga okinawensis sp. nov., a thermophilic sulfur-oxidizing chemolithoautotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. International Journal of Systematic and Evolutionary Microbiology 58:676–681, https://doi.org/10.1099/ijs.0.64615-0.
  80. Nunoura, T., H. Oida, M. Miyazaki, and Y. Suzuki. 2008b. Thermosulfidibacter takaii gen. nov., sp. nov., a thermophilic, hydrogen-oxidizing, sulfur-reducing chemolithoautotroph isolated from a deep-sea hydrothermal field in the Southern Okinawa Trough. International Journal of Systematic and Evolutionary Microbiology 58:659–665, https://doi.org/10.1099/ijs.0.65349-0.
  81. Opatkiewicz, A.D., D.A. Butterfield, and J.A. Baross. 2009. Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities. FEMS Microbiology Ecology 70:413–424, https://doi.org/10.1111/j.1574-6941.2009.00747.x.
  82. Perner, M., J.M. Petersen, F. Zielinski, H.H. Gennerich, and R. Seifert. 2010. Geochemical constraints on the diversity and activity of H2-oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. FEMS Microbiology Ecology 74:55–71, https://doi.org/10.1111/j.1574-6941.2010.00940.x.
  83. Pérez-Rodriguez, I., A. Grosche, L. Massenburg, V. Starovoytov, R.A. Lutz, and C. Vetriani. In press. Phorcysia thermohydrogeniphila gen. nov. sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent on the East Pacific Rise. International Journal of Systematic and Evolutionary Microbiology.
  84. Pérez-Rodriguez, I., J. Ricci, J.W. Voordeckers, V. Starovoytov, and C. Vetriani. 2009. Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 60:1,182–1,186, https://doi.org/10.1099/ijs.0.013904-0.
  85. Petersen, J.M., F.U. Zielinski, T. Pape, R. Seifert, C. Moraru, R. Amann, S. Hourdez, P.R. Girguis, S.D. Wankel, V. Barbe, and others. 2011. Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476:176–180, https://doi.org/10.1038/nature10325.
  86. Raman, K., and N. Chandra. 2009. Flux balance analysis of biological systems: Applications and challenges. Briefings in Bioinformatics 10:435–449, https://doi.org/10.1093/bib/bbp011.
  87. Reysenbach, A.-L., and E. Shock. 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296:1,077–1,082, https://doi.org/10.1126/science.1072483.
  88. Robidart, J.C., A. Roque, P.F. Song, and P.R. Girguis. 2011. Linking hydrothermal geochemistry to organismal physiology: Physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. PLoS One 6(7):e21692, https://doi.org/10.1371/journal.pone.0021692.
  89. Roussel, E.G., C. Konn, J.L. Charlou, J.P. Donval, Y. Fouquet, J. Querellou, D. Prieur, and M.A.C. Bonavita. 2011. Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiology Ecology 77:647–665, https://doi.org/10.1111/j.1574-6941.2011.01161.x.
  90. Schmidt, C., R. Vuillemin, C. Le Gall, F. Gaill, and N. Le Bris. 2008. Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps. Marine Chemistry 108:18–31, https://doi.org/10.1016/j.marchem.2007.09.009.
  91. Schrenk, M.O., J.F. Holden, and J.A. Baross. 2008. Magma to microbe networks in the context of sulfide hosted microbial ecosystems. Pp. 233–258 in Magma to Microbe. R.P. Lowell, J.F. Seewald, A. Metaxas, and M.R. Perfit, eds, Geophysical Monograph Series, vol. 178, American Geophysical Union, Washington, DC.
  92. Schrenk, M.O., J.A. Huber, and K.J. Edwards. 2010. Microbial provinces in the subseafloor. Annual Review of Marine Science 2:279–304, https://doi.org/10.1146/annurev-marine-120308-081000.
  93. Shank, T.M., D.J. Fornari, K.L. Von Damm, M.D. Lilley, R.L. Haymon, and R.A. Lutz. 1998. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50’N, East Pacific Rise). Deep Sea Research Part II 45:465–515, https://doi.org/10.1016/S0967-0645(97)00089-1.
  94. Shock, E.L., and M.E. Holland. 2004. Geochemical energy sources that support the subsurface biosphere. Pp. 153–165 in Subseafloor Biosphere at Mid-Oceanic Ridges. W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds, Geophysical Monograph Series, vol. 144, American Geophysical Union, Washington, DC.
  95. Sievert, S.M., M. Hügler, C.O. Wirsen, and C.D. Taylor. 2007. Sulfur oxidation at deep-sea hydrothermal vents. Pp. 238–258 in Microbial Sulfur Metabolism. C. Dahl and C.G. Friedrich, eds, Springer, Berlin, Germany.
  96. Slobodkina, G.B., T.V. Kolganova, N.A. Chernyh, J. Querellou, E.A. Bonch-Osmolovskaya, and A.I. Slobodkin. 2009. Deferribacter autotrophicus sp nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 59:1,508–1,512, https://doi.org/10.1099/ijs.0.006767-0.
  97. Smith, J.L., B.J. Campbell, T.E. Hanson, C.L. Zhang, and S.C. Cary. 2008. Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. International Journal of Systematic and Evolutionary Microbiology 58:1,598–1,602, https://doi.org/10.1099/ijs.0.65435-0.
  98. Sowell, S.M., P.E. Abraham, M. Shah, N.C. Verberkmoes, D.P. Smith, D.F. Barofsky, and S.J. Giovannoni. 2010. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. The ISME Journal 5(5):856–865, https://doi.org/10.1038/ismej.2010.168.
  99. Steinsbu, B.O., I.H. Thorseth, S. Nakagawa, F. Inagaki, M.A. Lever, B. Engelen, L. Øvreås, and R.B. Pedersen. 2010. Archaeoglobus sulfaticallidus sp. nov., a novel thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. International Journal of Systematic and Evolutionary Microbiology 60:2,745–2,752, https://doi.org/10.1099/ijs.0.016105-0.
  100. Stepanauskas, R., and M.E. Sieracki. 2007. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proceedings of the National Academy of Sciences of the United States of America 104:9,052–9,057, https://doi.org/10.1073/pnas.0700496104.
  101. Stolyar, S., S. Van Dien, K.L. Hillesland, N. Pinel, T.J. Lie, J.A. Leigh, and D.A. Stahl. 2007. Metabolic modeling of a mutualistic microbial community. Molecular Systems Biology 3:92, https://doi.org/10.1038/msb4100131.
  102. Strohm, T.O., B. Griffin, W.G. Zumft, and B. Schink. 2007. Growth yields in bacterial denitrification and nitrate ammonification. Applied and Environmental Microbiology 73:1,420–1,424, https://doi.org/10.1128/AEM.02508-06.
  103. Swan, B.K., M. Martinez-Garcia, C.M. Preston, A. Sczyrba, T. Woyke, D. Lamy, T. Reinthaler, N.J. Poulton, E.D.P. Masland, M.L. Gomez, and others. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1,296–1,300, https://doi.org/10.1126/science.1203690.
  104. Takai, K., and K. Nakamura. 2011. Archaeal diversity and community development in deep-sea hydrothermal vents. Current Opinion in Microbiology 14:282–291, https://doi.org/10.1016/j.mib.2011.04.013.
  105. Takai, K., H. Hirayama, T. Nakagawa, Y. Suzuki, K.H. Nealson, and K. Horikoshi. 2004a. Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, western Pacific. International Journal of Systematic and Evolutionary Microbiology 54:2,325–2,333, https://doi.org/10.1099/ijs.0.63284-0.
  106. Takai, K., H. Hirayama, T. Nakagawa, Y. Suzuki, K.H. Nealson, and K. Horikoshi. 2005. Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. International Journal of Systematic and Evolutionary Microbiology 55:183–189, https://doi.org/10.1099/ijs.0.63330-0.
  107. Takai, K., F. Inagaki, S. Nakagawa, H. Hirayama, T. Nunoura, Y. Sako, K.H. Nealson, and K. Horikoshi. 2003a. Isolation and phylogenetic diversity of members of previously uncultivated ε-proteobacteria in deep-sea hydrothermal fields. FEMS Microbiology Letters 218:167–174, https://doi.org/10.1111/j.1574-6968.2003.tb11514.x.
  108. Takai, K., A. Inoue, and K. Horikoshi. 2002. Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a western Pacific deep-sea hydrothermal vent system. International Journal of Systematic and Evolutionary Microbiology 52:1,089–1,095, https://doi.org/10.1099/ijs.0.02106-0.
  109. Takai, K., M. Miyazaki, H. Hirayama, S. Nakagawa, J. Querellou, and A. Godfroy. 2009. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environmental Microbiology 11:1,983–1,997, https://doi.org/10.1111/j.1462-2920.2009.01921.x.
  110. Takai, K., S. Nakagawa, A.-L. Reysenbach, and J. Hoek. 2006a. Microbial ecology of mid-ocean ridges and back-arc basins. Pp. 185–213 in Back-Arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions. D.M. Christie, C.R. Fisher, S.M. Lee, and S. Givens, eds, Geophysical Monograph Series, vol. 166, American Geophysical Union, Washington, DC.
  111. Takai, K., S. Nakagawa, Y. Sako, and K. Horikoshi. 2003b. Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. International Journal of Systematic and Evolutionary Microbiology 53:1,947–1,954, https://doi.org/10.1099/ijs.0.02773-0.
  112. Takai, K., K. Nakamura, T. Toki, U. Tsunogai, M. Miyazaki, J. Miyazaki, H. Hirayama, S. Nakagawa, T. Nunoura, and K. Horikoshi. 2008. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America 105:10,949–10,954, https://doi.org/10.1073/pnas.0712334105.
  113. Takai, K., K.H. Nealson, and K. Horikoshi. 2004b. Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. International Journal of Systematic and Evolutionary Microbiology 54:1,095–1,100, https://doi.org/10.1099/ijs.0.02887-0.
  114. Takai, K., K.H. Nealson, and K. Horikoshi. 2004c. Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. International Journal of Systematic and Evolutionary Microbiology 54:25–32, https://doi.org/10.1099/ijs.0.02787-0.
  115. Takai, K., M. Suzuki, S. Nakagawa, M. Miyazaki, Y. Suzuki, F. Inagaki, and K. Horikoshi. 2006b. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. International Journal of Systematic and Evolutionary Microbiology 56:1,725–1,733, https://doi.org/10.1099/ijs.0.64255-0.
  116. Taylor, C.D., C.O. Wirsen, and F. Gaill. 1999. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Applied and Environmental Microbiology 65:2,253–2,255.
  117. Tuttle, J.H., C.O. Wirsen, and H.W. Jannasch. 1983. Microbial activities in the emitted hydrothermal waters of the Galapagos Rift vents. Marine Biology 73:293–299.
  118. Vetriani, C., Y.S. Chew, S.M. Miller, J. Yagi, J. Coombs, R.A. Lutz, and T. Barkay. 2005. Mercury adaptation among bacteria from a deep-sea hydrothermal vent. Applied and Environmental Microbiology 71:220–226, https://doi.org/10.1128/AEM.71.1.220-226.2005.
  119. Vetriani, C., M.D. Speck, S.V. Ellor, R.A. Lutz, and V. Starovoytov. 2004. Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate ammonifying bacterium from deep-sea hydrothermal vents. International Journal of Systematic and Evolutionary Microbiology 54:175–181, https://doi.org/10.1099/ijs.0.02781-0.
  120. Von Damm, K.L. 1990. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Annual Review of Earth and Planetary Sciences 18:173–204, https://doi.org/10.1146/annurev.ea.18.050190.001133.
  121. Von Damm, K.L. 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Pp. 222–247 in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geochemical Interactions. S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thomson, eds, Geophysical Monograph Series, vol. 91, American Geophysical Union, Washington, DC.
  122. Voordeckers, J.W., V. Starovoytov, and C. Vetriani. 2005. Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. International Journal of Systematic and Evolutionary Microbiology 55:773–779, https://doi.org/10.1099/ijs.0.63430-0.
  123. Wang, F., H. Zhou, J. Meng, X. Peng, L. Jiang, P. Sun, C. Zhang, J.D. Van Nostrand, Y. Deng, Z. He, and others. 2009. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America 106:4,840–4,845, https://doi.org/10.1073/pnas.0810418106.
  124. Wankel, S.D., L.N. Germanovich, M.D. Lilley, G. Genc, C.J. DiPerna, A.S. Bradley, E.J. Olson, and P.R. Girguis. 2011. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nature Geoscience 4:461–468, https://doi.org/10.1038/ngeo1183.
  125. Wirsen, C.O., J.H. Tuttle, and H.W. Jannasch. 1986. Activities of sulfur-oxidizing bacteria at the 21°N East Pacific Rise vent site. Marine Biology 92:449–456.
  126. Woyke, T., G. Xie, A. Copeland, J.M. Gonzalez, C. Han, H. Kiss, J.H. Saw, P. Senin, C. Yang, S. Chatterji, and others. 2009. Assembling the marine Metagenome, one cell at a time. PLoS One 4(4):e5299, https://doi.org/10.1371/journal.pone.0005299.
  127. Xie, W., F. Wang, L. Guo, Z. Chen, S.M. Sievert, J. Meng, G. Huang, Y. Li, Q. Yan, S. Wu, and others. 2011. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. The ISME Journal 5:414–426, https://doi.org/10.1038/ismej.2010.144.
  128. Yamamoto, M., S. Nakagawa, S. Shimamura, K. Takai, and K. Horikosji. 2010. Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Environmental Microbiology 12:1,144–1,153 https://doi.org/10.1111/j.1462-2920.2010.02155.x.
  129. Zhang, Y., I. Thiele, D. Weekes, Z. Li, L. Jaroszewski, K. Ginalski, A.M. Deacon, J. Wooley, S.A. Lesley, I.A. Wilson, and others. 2009. Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325:5,947, https://doi.org/10.1126/science.1174671.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.