Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 01

View Issue TOC
Volume 25, No. 1
Pages 234 - 245

OpenAccess

Chemistry, Temperature, and Faunal Distributions at Diffuse-Flow Hydrothermal Vents: Comparison of Two Geologically Distinct Ridge Systems

By George W. Luther III , Amy Gartman, Mustafa Yücel , Andrew S. Madison, Tommy S. Moore , Heather A. Nees , Donald B. Nuzzio, Arunima Sen, Richard A. Lutz , Timothy M. Shank, and Charles R. Fisher 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Diffuse-flow, low-temperature areas near hydrothermal vents support life via chemosynthesis: hydrogen sulfide (and other reduced chemical compounds) emanating from the subsurface is oxidized with bottom-water oxygen through bacterial mediation to fix carbon dioxide and produce biomass. This article reviews the in situ diffuse-flow chemistry (mainly H2S and O2) and temperature data collected in 2006 and 2009 along the Eastern Lau Spreading Center (ELSC), and from 2004 to 2008 at 9°N along the East Pacific Rise (9 N EPR), predominantly around macrofauna that contain endosymbionts at these two hydrothermal vent regions. More than 48,000 and 20,000 distinct chemical and temperature data points were collected with a multi-analyte electrochemical analyzer in the diffuse-flow waters at 9 N EPR and the ELSC, respectively. Despite their different geological settings and different macrofauna (two different species of snails and mussels at the ELSC versus two different species of tubeworms and mussels at 9 N EPR), there are similarities in the temperature and chemistry data, as well as in the distributions of organisms. The pattern of water chemistry preferred by the provannid snails (Alviniconcha spp., Ifremeria nautilei) and Bathymodiolus brevior at the ELSC is similar to the water chemistry pattern found for the siboglinid tubeworms (Tevnia jerichonana, Riftia pachyptila) and the Bathymodiolus thermophilus mussels at 9 N EPR. The eruptions at 9 N EPR in 2005 and 2006 resulted in increased H2S concentrations, increased H2S/T ratios, and an initial change in the dominant tubeworm species from Riftia pachyptila to Tevnia jerichonana after the eruption created new vent habitats. In 2005, two sites at 9 N EPR showed major increases in the H2S/T ratio from 2004, which suggested a probable eruption in this basalt-dominated system. At the ELSC, there was a decrease in the H2S/T ratio from northern to southern sites, which reflects the change in geological setting from basalt to andesite and the shallower water depths at the southern sites.

Citation

Luther, G.W. III, A. Gartman, M. Yücel, A.S. Madison, T.S. Moore, H.A. Nees, D.B. Nuzzio, A. Sen, R.A. Lutz, T.M. Shank, and C.R. Fisher. 2012. Chemistry, temperature, and faunal distributions at diffuse-flow hydrothermal vents: Comparison of two geologically distinct ridge systems. Oceanography 25(1):234–245, https://doi.org/10.5670/oceanog.2012.22.

References

Bézos, A., S. Escrig, C.H. Langmuir, P.J. Michael, and P.D. Asimow. 2009. Origins of chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau Spreading Center. Journal of Geophysical Research 114, B06212, https://doi.org/10.1029/2008JB005924.

Crespo-Medina, M., A.D. Chatziefthimiou, N.S. Bloom, G.W. Luther III, D.D. Wright, J.R. Reinfelder, C. Vetriani, and T. Barkay. 2009. Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep-sea hydrothermal vents. Limnology and Oceanography 54:41–49, https://doi.org/10.4319/lo.2009.54.1.0041.

Escrig, S., A. Bézos, S.L. Goldstein, C.H. Langmuir, and P.J. Michael. 2009. Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau Basin–Tonga arc system. Geochemistry Geophysics Geosystems 10, Q04014, https://doi.org/10.1029/2008GC002281.

Ferrini, V.L., M.K. Tivey, S.M. Carbotte, F. Martinez, and C. Roman. 2008. Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin. Geochemistry Geophysics Geosystems 9, Q07022, https://doi.org/10.1029/2008GC002047.

Gartman, A., M. Yücel, A.S. Madison, D.W. Chu, S. Ma, C.P. Janzen, E.L. Becker, R.A. Beinart, P.R. Girguis, and G.W. Luther III. 2011. Sulfide oxidation across diffuse flow zones of hydrothermal vents. Aquatic Geochemistry 17:583–601, https://doi.org/10.1007/s10498-011-9136-1.

Herszage, J., and M. dos Santos Afonso. 2003. Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir 19:9,684–9,692, https://doi.org/10.1021/la034016p.

Johnson, K.S., J.J. Childress, and C.L. Beehler. 1988. Short-term temperature variability in the rose garden hydrothermal vent field: An unstable deep-sea environment. Deep-Sea Research 35:1,711–1,721, https://doi.org/10.1016/0198-0149(88)90045-3.

Le Bris, N., P.M. Sarradinand, and S. Pennec. 2001. A new deep-sea probe for in situ pH measurement in the environment of hydrothermal vent biological communities. Deep-Sea Research Part I 48:1,941–1,951, https://doi.org/10.1016/S0967-0637(00)00112-6.

Le Bris, N., B. Govenar, C. Le Gall, and C.R. Fisher. 2006a. Variability of physico-chemical conditions in 9°50’N EPR diffuse flow vent habitats. Marine Chemistry 98:167–182, https://doi.org/10.1016/j.marchem.2005.08.008.

Le Bris, N., P. Rodier, P.M. Sarradin, and C. Le Gall. 2006b. Is temperature a good proxy for sulfide in hydrothermal vent habitats? Cahiers de Biologie Marine 47:465–470. Available online at: http://archimer.ifremer.fr/doc/2006/publication-3609.pdf (accessed December 9, 2011).

Luther, G.W. III, 2010. The role of one and two electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquatic Geochemistry 16:395–420, https://doi.org/10.1007/s10498-009-9082-3.

Luther, G.W. III, A.J. Findlay, D.J. MacDonald, S.M. Owings, T.E. Hanson, R.A. Beinart, and P.R. Girguis. 2011. Thermodynamics and kinetics of sulfide oxidation by oxygen: A look at inorganically controlled reactions and biologically mediated processes in the environment. Frontiers in Microbiology 2:1–9, https://doi.org/10.3389/fmicb.2011.00062.

Luther, G.W. III, B.T. Glazer, S. Ma, R.E. Trouwborst, T.S. Moore, E. Metzger, C. Kraiya, T.J. Waite, G. Druschel, B. Sundby, and others. 2008. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Marine Chemistry 108:221–235, https://doi.org/10.1016/j.marchem.2007.03.002.

Luther, G.W. III, T.F. Rozan, M. Taillefert, D.B. Nuzzio, C. Di Meo, T.M. Shank, R.A. Lutz, and S.C. Cary. 2001. Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816, https://doi.org/10.1038/35071069.

Lutz, R.A., T.M. Shank, G.W. Luther III, C. Vetriani, M. Tolstoy, D.B. Nuzzio, T.S. Moore, F. Waldhauser, M. Crespo-Medina, A. Chatziefthimou, and others. 2008. Interrelationships between vent fluid chemistry, temperature, seismic activity and biological community structure at a mussel-dominated, deep-sea hydrothermal vent along the East Pacific Rise. Journal of Shellfish Research 27:177–190, https://doi.org/10.2983/0730-8000(2008)27[177:IBVFCT]2.0.CO;2.

Millero, F.J. 2007. The marine inorganic carbon cycle. Chemical Reviews 107:308–341, https://doi.org/10.1021/cr0503557.

Moore, T.S., T.M. Shank, D.B. Nuzzio, and G.W. Luther III. 2009. Time-series chemical and temperature habitat characterization of diffuse flow hydrothermal sites at 9°50’N East Pacific Rise. Deep Sea Research Part II 56:1,616–1,621, https://doi.org/10.1016/j.dsr2.2009.05.008.

Mottl, M.J., J.S. Seewald, C.G. Wheat, M.K. Tivey, P.J. Michael, G. Proskurowski, T.M. McCollom, E. Reeves, J. Sharkey, C.-F. You, and others. 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta 75:1,013–1,038, https://doi.org/10.1016/j.gca.2010.12.008.

Mullaugh, K.M., G.W. Luther III, S. Ma, T.S. Moore, M. Yücel, E. Becker, E. Powdoski, C.R. Fisher, R.E. Trouwborst, and B.K. Pierson. 2008. Voltammetric (micro)electrodes for the in situ study of Fe2+ oxidation kinetics in hot springs and S2O32– production at hydrothermal vents. Electroanalysis 20:280–290, https://doi.org/10.1002/elan.200704056.

Nees, H.A., R.A. Lutz, T.M. Shank, and G.W. Luther III. 2009. Pre- and post-eruption diffuse flow variability among tubeworm habitats at 9°50’ north on the East Pacific Rise. Deep Sea Research Part II 56:1,607–1,615, https://doi.org/10.1016/j.dsr2.2009.05.007.

Nees, H.A., T.S. Moore, K.M. Mullaugh, R.R. Holyoke, C.P. Janzen, S. Ma, E. Metzger, T.J. Waite, M. Yücel, R.A. Lutz., and others. 2008. Hydrothermal vent mussel habitat chemistry pre- and post-eruption at 9°50’ on the East Pacific Rise. Journal of Shellfish Research 27:169–175, https://doi.org/10.2983/0730-8000(2008)27[169:HVMHCP]2.0.CO;2.

Podowski, E.L., S. Ma, G.W. Luther III, D. Wardrop, and C.R. Fisher. 2010. Biotic and abiotic factors affecting realized distributions of mega-fauna in diffuse flow on andesite and basalt along the Eastern Lau Spreading Center, Tonga. Marine Ecology Progress Series 418:25–45, https://doi.org/10.3354/meps08797.

Podowski, E.L., T.S. Moore, K.A. Zelnio, G.W. Luther III, and C.R. Fisher. 2009. Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga. Deep Sea Research Part I 56:2,041–2,056, https://doi.org/10.1016/j.dsr.2009.07.002.

Pyzik, A.J., and S.E. Sommer. 1981. Sedimentary iron monosulfides: Kinetics and mechanism of formation. Geochimica et Cosmochimica Acta 45:687–698, https://doi.org/10.1016/0016-7037(81)90042-9.

Ryan, W.B.F., S.M. Carbotte, J.O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R.A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, and others. 2009. Global multi-resolution topography synthesis. Geochemistry Geophysics Geosystems 10, Q03014, https://doi.org/10.1029/2008GC002332.

Shank, T.M., D.J. Fornari, K.L. Von Damm, M.D. Lilley, R.M. Haymon, and R.A. Lutz. 1998. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50’N, East Pacific Rise). Deep-Sea Research Part II 45:465–515.

Tolstoy, M., J.P. Cowen, E.T. Baker, D.J. Fornari, K.H. Rubin, T.M. Shank, F. Waldhauser, D.R. Bohnenstiehl, D.W. Forsyth, D.W. Holmes, and others. 2006. A sea-floor spreading event captured by seismometers. Science 314:1,920–1,922, https://doi.org/10.1126/science.1133950.

Vallier, T.L., G.A. Jenner, F.A. Frey, J.B. Gill, A.S. Davis, A.M. Volpe, J.W. Hawkins, J.D. Morris, P.A. Cawood, J.L. Morton, and others. 1991. Subalkaline andesite from

Valu Fa Ridge, a back-arc spreading center in southern Lau Basin: Petrogenesis, comparative chemistry, and tectonic implications. Chemical Geology 91:227–256, https://doi.org/10.1016/0009-2541(91)90002-9.

Waite, T.J., T.S. Moore, J.J. Childress, H. Hsu-Kim, K.M. Mullaugh, D.B. Nuzzio, A.N. Paschal, J. Tsang, C.R. Fisher, and G.W. Luther III. 2008. Variation in sulfur speciation with shellfish presence at a Lau Basin diffuse flow vent site. Journal of Shellfish Research 27:163–168, https://doi.org/10.2983/0730-8000(2008)27[163:VISSWS]2.0.CO;2.

Yao, W., and F.J. Millero. 1996. Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Marine Chemistry 52:1–16, https://doi.org/10.1016/0304-4203(95)00072-0.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.