Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 03

View Issue TOC
Volume 26, No. 3
Pages 18 - 25

Autonomous Ocean Measurements in the California Current Ecosystem

Mark D. Ohman Daniel L. RudnickAlexander Chekalyuk Russ E. DavisRichard A. FeelyMati Kahru Hey-Jin KimMichael R. LandryTodd R. MartzChristopher L. SabineUwe Send
Article Abstract

Event-scale phenomena, of limited temporal duration or restricted spatial extent, often play a disproportionately large role in ecological processes occurring in the ocean water column. Nutrient and gas fluxes, upwelling and downwelling, transport of biogeochemically important elements, predator-prey interactions, and other processes may be markedly influenced by such events, which are inadequately resolved from infrequent ship surveys. The advent of autonomous instrumentation, including underwater gliders, profiling floats, surface drifters, enhanced moorings, coastal high-frequency radars, and satellite remote sensing, now provides the capability to resolve such phenomena and assess their role in structuring pelagic ecosystems. These methods are especially valuable when integrated together, and with shipboard calibration measurements and experimental programs.

Citation

Ohman, M.D., D.L. Rudnick, A. Chekalyuk, R.E. Davis, R.A. Feely, M. Kahru, H.-J. Kim, M.R. Landry, T.R. Martz, C.L. Sabine, and U. Send. 2013. Autonomous ocean measurements in the California Current Ecosystem. Oceanography 26(3):18–25, https://doi.org/​10.5670/oceanog.2013.41.

References

Alin, S.R., R.A. Feely, A. Dickson, J.M. Hernandez-Ayon, L.W. Juranek, M.D. Ohman, and R. Goericke. 2012. Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011). Journal of Geophysical Research 117, C05033, https://doi.org/​10.1029/2011JC007511.

Bednaršek, N., G.A. Tarling, D.C.E. Bakker, S. Fielding, E.M. Jones, H.J. Venables, P. Ward, A. Kuzirian, B. Leze, R.A. Feely, and E.J. Murphy. 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience 5:881–885, https://doi.org/​10.1038/ngeo1635.

Bishop, J.K.B. 2009. Autonomous observations of the ocean biological carbon pump. Oceanography 22(2):182–193, https://doi.org/10.5670/oceanog.2009.48.

Checkley, D.M., Jr., R.E. Davis, A.W. Herman, G.A. Jackson, B. Beanlands, and L.A. Regier. 2008. Assessing plankton and other particles in situ with the SOLOPC. Limnology and Oceanography 53:2,123–2,136, https://doi.org/10.4319/lo.2008.53.5_part_2.2123.

Chekalyuk, A., and M. Hafez. 2008. Advanced laser fluorometry of natural aquatic environments. Limnology and Oceanography: Methods 6:591–609, https://doi.org/10.4319/lom.2008.6.591.

Chekalyuk, A., M.R. Landry, R. Goericke, A.G. Taylor, and M.A. Hafez. 2012. Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem. Journal of Plankton Research 34:761–777, https://doi.org/10.1093/plankt/fbs034.

Davis, R.E., M.D. Ohman, D.L. Rudnick, J.T. Sherman, and B. Hodges. 2008. Glider surveillance of physics and biology in the southern California Current System. Limnology and Oceanography 53:2,151–2,168, https://doi.org/10.4319/lo.2008.53.5_part_2.2151.

Dickey, T., N. Bates, R.H. Byrne, G. Chang, F.P. Chavez, R.A. Feely, A.K. Hanson, D.M. Karl, D. Manov, C. Moore, and others. 2009. The NOPP O-SCOPE and MOSEAN projects: Advanced sensing for ocean observing systems. Oceanography 22(2):168–181, https://doi.org/​10.5670/oceanog.2009.47.

Franks, P.J.S., E. Di Lorenzo, N.L. Goebel, F. Chenillat, P. Rivière, C.A. Edwards, and A.J. Miller. 2013. Modeling physical-biological responses to climate change in the California Current System. Oceanography 26(3):26–33, https://doi.org/​10.5670/oceanog.2013.42.

Herman, A.W., B. Beanlands, M. Chin-Yee, A. Furlong, J. Snow, S. Young, and T. Phillips. 1998. The Moving Vessel Profiler (MVP): In-situ sampling of plankton and physical parameters at 12 kts and the integration of a new Laser Optical Plankton (LOPC) Counter. http://www.alexherman.com/pub002.php.

Johnson, K.S., S.C. Riser, and D.M. Karl. 2010. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465:1,062–1,065, https://doi.org/​10.1038/nature09170.

Kahru, M., R.M. Kudela, M. Manzano-Sarabia, and B.G. Mitchell. 2012. Trends in the surface chlorophyll of the California Current: Merging data from multiple ocean color satellites. Deep Sea Research Part II 77–80:89–98, https://doi.org/​10.1016/j.dsr2.2012.04.007.

Kim, S.Y., E.J. Terrill, B.D. Cornuelle, B. Jones, L. Washburn, M.A. Moline, J.D. Paduan, N. Garfield, J.L. Largier, G. Crawford, and P.M. Kosro. 2011. Mapping the US West Coast surface circulation: A multiyear analysis of high-frequency radar observations. Journal of Geophysical Research: Oceans 116, C03011, https://doi.org/10.1029/2010jc006669.

Landry, M.R., M.D. Ohman, R. Goericke, M.R. Stukel, K. Barbeau, R. Bundy, and M. Kahru. 2012. Pelagic community responses to a deep-water front in the California Current Ecosystem: Overview of the A-Front study. Journal of Plankton Research 34:739–748, https://doi.org/10.1093/plankt/fbs025.

Nam, S., H.J. Kim, and U. Send. 2011. Amplification of hypoxic and acidic events by La Niña conditions on the continental shelf off California. Geophysical Research Letters 38, L22602, https://doi.org/​10.1029/2011gl049549.

Ohman, M.D., J.R. Powell, M. Picheral, and D.W. Jensen. 2012. Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System. Journal of Plankton Research 34:815–827, https://doi.org/
10.1093/plankt/fbs028
.

Oliver, M.J., M.A. Moline, I. Robbins, W. Fraser, D. Patterson, and O. Schofield. 2012. Letting penguins lead: Dynamic modeling of penguin locations guides autonomous robotic sampling. Oceanography 25(3):120–121, https://doi.org/​10.5670/oceanog.2012.84.

Perry, M.J., and D.L. Rudnick. 2003. Observing the ocean with autonomous and Lagrangian platforms and sensors (ALPS): The role of ALPS in sustained ocean observing systems. Oceanography 16(4):31–36, https://doi.org/​10.5670/oceanog.2003.06.

Powell, J.R. 2013. Ocean fronts in the southern California Current System and their role in structuring zooplankton distributions, diel vertical migration, and size composition. PhD thesis, University of California, San Diego, 190 pp.

Roemmich, D., and the Argo Steering Team. 2009. Argo: The challenge of continuing 10 years of progress. Oceanography 22(3):46–55, https://doi.org/10.5670/oceanog.2009.65.

Rudnick, D.L., R.E. Davis, C.C. Eriksen, D.M. Fratantoni, and M.J. Perry. 2004. Underwater gliders for ocean research. Marine Technology Society Journal 38:73–84.

Send, U., G. Fowler, G. Siddall, B. Beanlands, M. Pittman, C. Waldmann, J. Karstensen, and R. Lampitt. 2012. Seacycler: A moored open-ocean profiling system for the upper ocean in extended self-contained deployments. Journal of Atmospheric and Oceanic Technology, https://doi.org/10.1175/JTECH-D-11-00168.1.

Todd, R.E., D.L. Rudnick, R.E. Davis, and M.D. Ohman. 2011a. Underwater gliders reveal rapid arrival of El Niño effects off California’s coast. Geophysical Research Letters 38, L03609, https://doi.org/10.1029/2010GL046376.

Todd, R.E., D.L. Rudnick, M.R. Mazloff, R.E. Davis, and B.D. Cornuelle. 2011b. Poleward flows in the southern California Current System: Glider observations and numerical simulation. Journal of Geophysical Research: Oceans 116, C02026, https://doi.org/10.1029/2010JC006536.