Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 03

View Issue TOC
Volume 27, No. 3
Pages 17 - 23

OpenAccess

COMMENTARY • Augmenting the Biological Pump: The Shortcomings of Geoengineered Upwelling

By Susie J. Bauman, Matthew T. Costa, Michael B. Fong, Brian M. House, Elena M. Perez, Maxine H. Tan, Alexander E. Thornton, and Peter J.S. Franks  
Jump to
Citation References Copyright & Usage
First Paragraph

The ocean is the largest reservoir of mobile carbon over decadal to centennial time scales, absorbing approximately 41% of cumulative anthropogenic CO2 emissions (Sabine and Tanhua, 2010). Various geoengineering solutions seek to exploit this uptake capacity (see Vaughan and Lenton, 2011, for a review), including CO2 injection (Marchetti, 1977), iron fertilization (Martin et al., 1994), and artificial upwelling (Lovelock and Rapley, 2007). The ubiquity of social media—allowing anyone to “self-publish”—and funding from crowd-sources and private foundations have allowed some proposals to gain traction outside of the peer-reviewed scientific literature. A recent example is the proposal by theoretical neurobiologist W.H. Calvin (2013) to construct a massive array of push-pull pump systems to enhance the ocean’s natural biological pump to sequester atmospheric CO2.

Citation

Bauman, S.J., M.T. Costa, M.B. Fong, B.M. House, E.M. Perez, M.H. Tan, A.E. Thornton, and P.J.S. Franks. 2014. Augmenting the biological pump: The shortcomings of geoengineered upwelling. Oceanography 27(3):17–23, https://doi.org/10.5670/oceanog.2014.79.

References
    Acuña, J.L., M. López-Alvarez, E. Nogueira, and F. González-Taboada. 2010. Diatom flotation at the onset of the spring phytoplankton bloom: An in situ experiment. Marine Ecology Progress Series 400:115–125, https://doi.org/10.3354/meps08405.
  1. Aure, J., S. Oivind, S.R. Erga, and T. Strohmeier. 2007. Primary production enhancement by artificial upwelling in a western Norwegian fjord. Marine Ecology Progress Series 352:39–52, https://doi.org/10.3354/meps07139.
  2. Bartoli, M., L. Vezzulli, D. Nizzoli, R. Azzoni, S. Porrello, M. Moreno, M. Fabiano, and P. Viaroli. 2009. Short-term effect of oxic to anoxic transition on benthic microbial activity and solute fluxes in organic-rich phytotreatment ponds. Hydrobiologia 629:123–136, https://doi.org/10.1007/978-90-481-3385-7_11.
  3. Boyd, P.W., and P.P. Newton. 1999. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep Sea Research Part I 46(1):63–91, https://doi.org/10.1016/S0967-0637(98)00066-1.
  4. Boyd, P.W., T. Jickells, C.S. Law, S. Blain, E.A. Boyle, K.O. Buesseler, K.H. Coale, J.J. Cullen, H.J.W. de Baar, M. Follows, and others. 2007. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science 315:612–617, https://doi.org/10.1126/science.1131669.
  5. Brzezinski, M.A., J.W. Krause, M.J. Church, D.M. Karl, B. Li, J.L. Jones, and B. Updyke. 2011. The annual silica cycle of the North Pacific subtropical gyre. Deep Sea Research Part I 158:988–1,001, https://doi.org/10.1016/j.dsr.2011.08.001.
  6. Cai, W.J., M. Dai, Y. Wang. 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters 33, L12603, https://doi.org/10.1029/2006GL026219.
  7. Calvin, W.H. 2013. Using the oceans to remove CO2 from the atmosphere. http://geo-engineering.blogspot.com/2013/03/using-the-oceans-to-remove-co2-from-the-atmosphere.html (accessed March 9, 2014).
  8. Codispoti, L.A., J.A. Brandes, J.P. Christensen, A.H. Devol, S.W.A. Naqvi, H.W. Paerl, and T. Yoshinari. 2001. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the Anthropocene? Scientia Marina 65:85–105, https://doi.org/10.3989/scimar.2001.65s285.
  9. Cullen, J.J., and P.W. Boyd. 2008. Predicting and verifying the intended and unintended consequences of large-scale ocean iron fertilization. Marine Ecology Progress Series 364:295–301, https://doi.org/10.3354/meps07551.
  10. De Vries, T., and F. Primeau. 2011. Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. Journal of Physical Oceanography 41:2,381–2,401, https://doi.org/10.1175/JPO-D-10-05011.1.
  11. Doney, S.C. 2006. The dangers of ocean acidification. Scientific American Series 294:58–65, https://doi.org/10.1038/scientificamerican0306-58.
  12. Dutreuil, S., L. Bopp, and A. Tagliabue. 2009. Impact of enhanced vertical mixing on marine biochemistry: Lessons for geo-engineering and natural variability. Biogeosciences 6:901–912, https://doi.org/10.5194/bg-6-901-2009.
  13. Fan, W., J. Chen, Y. Pan, H. Huang, C.-T.A. Chen, and Y. Chen. 2013. Experimental study on the performance of an air-lift pump for artificial upwelling. Ocean Engineering 59:47–57, https://doi.org/10.1016/j.oceaneng.2012.11.014.
  14. Flewelling, L.J., J.P. Naar, J.P. Abbott, D.G. Baden, N.B. Barros, G.D. Bossart, M.-Y.D. Bottein, D.G. Hammond, E.M. Haubold, C.A. Heil, and others. 2005. Brevetoxicosis: Red tides and marine mammal mortalities. Nature 435:755–756, https://doi.org/10.1038/nature435755a.
  15. Fuhrman, J.A., and D.G. Capone. 1991. Possible biogeochemical consequences of ocean fertilization. Limnology and Oceanography 36:1,951–1,959.
  16. Gooday, A.J., L.A. Levin, A. Aranda da Silva, B.J. Bett, G.L. Cowie, D. Dissard, J.D. Gage, D.J. Hughes, R. Jeffeys, P.A. Lamont, and others. 2009. Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep Sea Research Part II 56:488–502, https://doi.org/10.1016/j.dsr2.2008.10.003.
  17. Gruber, N. 2004. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2. Pp. 97–148 in The Ocean Carbon Cycle and Climate. M. Follows and T. Oguz, eds, Kluwer Academic, Dordrecht.
  18. Jin, D., E. Thunberg, and P. Hoagland. 2008. Economic impact of the 2005 red tide event on commercial shellfish fisheries in New England. Ocean & Coastal Management 51:420–429, https://doi.org/10.1016/j.ocecoaman.2008.01.004.
  19. Jin, X., and N. Gruber. 2003. Offsetting the radiative benefit of ocean iron fertilization by N2O emissions. Geophysical Research Letters 30, 2249, https://doi.org/10.1029/2003GL018458.
  20. Keeling, R.F., A. Kortzinger, and N. Gruber. 2010. Ocean deoxygenation in a warming world. Annual Review of Marine Science 2:199–229, https://doi.org/10.1146/annurev.marine.010908.163855.
  21. Keller, D.P., E.Y. Feng, and A. Oschlies. 2014. Potential climate engineering effectiveness and side effects during a high carbon dioxide- emission scenario. Nature Communications 5, 3304, https://doi.org/10.1038/ncomms4304.
  22. Kenyon, K.E. 2007. Upwelling by a wave pump. Journal of Oceanography 63:327–331, http://www.terrapub.co.jp/journals/JO/pdf/6302/63020327.pdf.
  23. Lampitt, R.S., E.P. Achterberg, T.R. Anderson, J.A. Hughes, M.D. Iglesias-Rodriguez, B.A. Kelly-Gerreyn, M. Lucas, E.E. Popova, R. Sanders, J.G. Shepherd, and others. 2008. Ocean fertilization: A potential means of geoengineering? Philosophical Transactions of the Royal Society A 366:3,919–3,945, https://doi.org/10.1098/rsta.2008.0139.
  24. Law, C.S. 2008. Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Marine Ecology Progress Series 364:283–288, https://doi.org/10.3354/meps07549.
  25. Levin, L.A., W. Ekau, A.J. Gooday, F. Jorissen, J.J. Middelburg, W. Naqvi, C. Neira, N.N. Rabalais, and J. Zhang. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences Discussions 6:2,063–2,098, https://doi.org/10.5194/bg-6-2063-2009.
  26. Liu, W., and Z. Liu. In press. Assessing the stability of the Atlantic meridional overturning circulation of the past, present, and future. Journal of Meteorological Research 28, https://doi.org/10.1007/s13351-014-4006-6.
  27. Lovelock, J.E., and C.G. Rapley. 2007. Ocean pipes could help the Earth to cure itself. Nature 449:403, https://doi.org/10.1038/449403a.
  28. Marchetti, C. 1977. On geoengineering and the CO2 problem. Climatic Change 1:59–68, https://doi.org/10.1007/BF00162777.
  29. Martin, J.H., K.H. Coale, K.S. Johnson, S.E. Fitzwater, R.M. Gordon, S.J. Tanner, C.N. Hunter, V.A. Elrod, J.L. Nowicki, T.L. Coley, and others. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129, https://doi.org/10.1038/371123a0.
  30. McClimans, T.A., A. Handå, A. Fredheim, E. Lien, and K.I. Reitan. 2010. Controlled artificial upwelling in a fjord to stimulate non-toxic algae. Aquacultural Engineering 42:140–147, https://doi.org/10.1016/j.aquaeng.2010.02.002.
  31. Millero, F.J., 2007. The marine inorganic carbon cycle. Chemical Reviews 107:308–341, https://doi.org/10.1021/cr0503557.
  32. Mopper, K., X. Zhou, R.J. Kieber, D.J. Kieber, R.J. Sikorski, and R.D. Jones. 1991. Photochemical degradation of dissolved organic carbon and its impacts on the oceanic carbon cycle. Nature 353:60–62, https://doi.org/10.1038/353060a0.
  33. Munk, W., and C. Wunsch. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I 45:1,977–2,010, https://doi.org/10.1016/S0967-0637(98)00070-3.
  34. Oschlies, A., and P. Kahler. 2004. Biotic contribution to air-sea fluxes of CO2 and O2 and its relation to new production, export production, and net community production. Global Biogeochemical Cycles 18, GB1015, https://doi.org/10.1029/2003GB002094.
  35. Oschlies, A., M. Pahlow, A. Yool, and R.J. Matear. 2010. Climate engineering by artificial ocean upwelling: Channeling the sorcerer’s apprentice. Geophysical Research Letters 37, L04701, https://doi.org/10.1029/2009GL041961.
  36. Paytan, A., and K. McLaughlin. 2007. The oceanic phosphorus cycle. Chemical Review 107:563–576, https://doi.org/10.1021/cr0503613.
  37. Prince, E.D., and C.P. Goodyear. 2006. Hypoxia-based habitat compression of tropical pelagic fishes. Fisheries Oceanography 15:451–464, https://doi.org/10.1111/j.1365-2419.2005.00393.x.
  38. Purcell, J.E., S.I. Uye, and W.T. Lo. 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Marine Ecology Progress Series 350:153–174, https://doi.org/10.3354/meps07093.
  39. Robinson, J., E.E. Popova, A. Yool, M. Srokosz, R.S. Lampitt, and J.R. Blundell. 2014. How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean. Geophysical Research Letters 41:2,489–2,495, https://doi.org/10.1002/2013GL058799.
  40. Ryan, J.P., A.M. Fischer, R.M. Kudela, J.F.R. Gower, S.A. King, R. Marin III, and F.P. Chavez. 2009. Influences of upwelling and downwelling winds on red tide bloom dynamics in Monterey Bay, California. Continental Shelf Research 29:785–795, https://doi.org/10.1016/j.csr.2008.11.006.
  41. Sabine, C.L., and T. Tanhua. 2010. Estimation of anthropogenic CO2 inventories in the ocean. Annual Reviews of Marine Science 2:175–198, https://doi.org/10.1146/annurev-marine-120308-080947.
  42. Sarmiento, J.L., and J.R. Toggweiler. 1984. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308(12):621–624, https://doi.org/10.1038/308621a0.
  43. Sarmiento, J.L., and N. Gruber. 2006. Ocean Biogeochemical Dynamics. Princeton University Press 528 pp.
  44. Stegen, G.R., K.H. Cole, and R. Bacastow. 1993. The influence of discharge depth and location on the sequestration of carbon dioxide. Energy Conversion and Management 34:857–864, https://doi.org/10.1016/0196-8904(93)90029-A.
  45. Stommel, H., A.B. Arons, and D. Blanchard. 1956. An oceanographical curiosity: The perpetual salt fountain. Deep Sea Research 3:152–153, https://doi.org/10.1016/0146-6313(56)90095-8.
  46. Talley, L.D., G.L. Pickard, W.J. Emery, and J.H. Swift. 2011. Descriptive Physical Oceanography: An Introduction, 6th ed. Elsevier, Boston, 560 pp.
  47. Tsubaki, K., S. Maruyama, A. Komiya, and H. Mitsugashira. 2007. Continuous measurement of an artificial upwelling of deep sea water induced by the perpetual salt fountain. Deep Sea Research Part I 54:75–84, https://doi.org/10.1016/j.dsr.2006.10.002.
  48. Vaughan, N.E., and T.M. Lenton. 2011. A review of climate geoengineering proposals. Climatic Change 109:745–790, https://doi.org/10.1007/s10584-011-0027-7.
  49. Waite, A., A. Fisher, P.A. Thompson, and P.J. Harrison. 1997. Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Marine Ecology Progress Series 157:97–108, https://doi.org/10.3354/meps157097.
  50. Watanabe, M., and T. Hibiya. 2002. Global estimates of wind-induced energy flux to inertial motion in the surface mixed layer. Geophysical Research Letters 29(8), https://doi.org/10.1029/2001GL014422.
  51. White, A., K. Björkman, E. Grabowski, R. Letelier, S. Poulos, B. Watkins, and D. Karl. 2010. An open ocean trial of controlled upwelling using wave pump technology. Journal of Atmospheric and Oceanic Technology 27:385–396, https://doi.org/10.1175/2009JTECHO679.1.
  52. Williamson, N., A. Komiya, S. Maruyama, M. Behnia, and S.W. Armfield. 2009. Nutrient transport from an artificial upwelling of deep sea water. Journal of Oceanography 65:349–359, https://doi.org/10.1007/s10872-009-0032-x.
  53. Wu, R.S. 2002. Hypoxia: From molecular responses to ecosystem responses. Marine Pollution Bulletin 45:35–45, https://doi.org/10.1016/S0025-326X(02)00061-9.
  54. Yool, A., J.G. Shepherd, H.L. Bryden, and A. Oschlies. 2009. Low efficiency of nutrient translocation for enhancing oceanic uptake of carbon dioxide. Journal of Geophysical Research 114, C08009, https://doi.org/10.1029/2008JC004792.
  55. Zarauz, L., X. Irigoien, and J.A. Fernandes. 2009. Changes in plankton size structure and composition, during the generation of a phytoplankton bloom, in the central Cantabrian Sea. Journal of Plankton Research 31:193–207, https://doi.org/10.1093/plankt/fbn107.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.