Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 04

View Issue TOC
Volume 22, No. 4
Pages 26 - 35


An Accounting of the Observed Increase in Oceanic and Atmospheric CO2 and an Outlook for the Future

By Pieter Tans  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Observations of CO2 accumulation in the atmosphere and ocean show that they are approximately equal to the total amount emitted by burning of fossil fuels since 1850. A mass balance calculation is carried out with ocean uptake satisfying two observed constraints, and with net terrestrial emissions as the remainder. The calculation illustrates that before 1940, net terrestrial emissions were positive, and have been negative since then, making their cumulative contribution in 2008 rather small. The overall evidence strongly suggests that the increase of CO2 in the atmosphere is 100% due to human activities, and is dominated by fossil fuel burning. Some simple projections of atmospheric CO2, and therefore also of surface pCO2 for most of the ocean, are made with plausible future scenarios of fossil fuel emissions, only taking into account features of the carbon cycle that are quite well established.


Tans, P. 2009. An accounting of the observed increase in oceanic and atmospheric CO2 and an outlook for the future. Oceanography 22(4):26–35, https://doi.org/10.5670/oceanog.2009.94.


Andres, R.J., D.J. Fielding, G. Marland, T.A. Boden, and N. Kumar. 1999. Carbon dioxide emissions from fossil fuel use, 1751–1950. Tellus 51B:759–765.

Archer, D., M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, K. Caldeira, K. Matsumoto, G. Munhoven, A. Montenegro, and K. Tokos. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth and Planetary Sciences 37:117–134.

BP Statistical Review of World Energy. June 2009. Available online at: http://www.bp.com/productlanding.do?categoryId=6929&contentId= 7044622 (accessed November 14, 2009).

Canadell, J.G., C. LeQuéré, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland. 2007. Proceedings of the National Academy of Sciences of the United States of America 104:18,866–18,870.

Dlugokencky, E., L. Bruhwiler, J.W.C. White, L.K. Emmons, P.C. Novelli, S.A. Montzka, K.A. Masarie, P.M. Lang, A.M. Crotwell, J.B. Miller, and L.V. Gatti. 2009. Observational constraints on recent increases in the atmospheric CH4 burden. Geophysical Research Letters 36, L18803, doi:10.1029/2009GL039780.

Etheridge, D.M., L.P. Steele, R.L. Langenfelds, R.J. Francey, J.-M. Barnola, and V.I. Morgan. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research 101:4,115–4,128.

Gruber, N., J.L. Sarmiento, and T.F. Stocker. 1996. An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochemical Cycles 10:809–837.

Gruber, N., M. Gloor, S.E. Mikaloff Fletcher, S.C. Doney, S. Dutkiewicz, M.J. Follows, M. Gerber, A.R. Jacobson, F. Joos, K. Lindsay, and others. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles 23, GB1005, doi:10.1029/2008GB003349.

Hönisch, B., N.G. Hemming, D. Archer, M. Siddall, and J.F. McManus. 2009. Atmospheric carbon dioxide concentration across the Mid-Pleistocene transition. Science 324:1,551–1,554.

Höök, M., and K. Aleklett. 2009. Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology 78:201–216.

IPCC (Intergovernmental Panel on Climate Change). 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK, and New York, 881 pp. Available online at: http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg1/index.htm (accessed December 4, 2009).

Keeling, C.D. 1958. The concentration and isotopic abundances of carbon dioxide in rural areas. Geochimica et Cosmochimica Acta 13:322–334.

Keeling, C.D. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus XII:200–203.

Keith, D.W. 2009. Why capture CO2 from the atmosphere? Science 325:1,654–1,655.

LeQuéré, C., C. Rödenbeck, E.T. Buitenhuis, T.J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, and others. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1,735–1,738.

Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fisher, K. Kawamura, and T. Stocker. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382.

MacFarling Meure, C., D. Etheridge, C. Trudinger, P. Steele, R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins. 2006. Law Dome CO2, CH4, and N2O ice core records extended to 2000 years. Geophysical Research Letters 33, L14810, doi:10.1029/2006GL026152

Maier-Reimer, E. 1993. Geochemical cycles in an ocean general circulation model: Preindustrial tracer distributions. Global Biogeochemical Cycles 7:645–677.

Manning, A.C., and R.F. Keeling. 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus 58B:95–116.

Marland, G., and R.M. Rotty. 1984. Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950–82. Tellus 36B:232–261.

Pales, J.C., and C.D. Keeling. 1965. The concentration of carbon dioxide in Hawaii. Journal of Geophysical Research 70:6,053–6,076.

Roe, G.H., and M.B. Baker. 2007. Why is climate sensitivity so unpredictable? Science 318:629–632.

Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, and others. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–371.

Sarmiento, J.L., and J.C. Orr. 1992. A perturbation simulation of CO2 uptake in an ocean general circulation model. Journal of Geophysical Research 97:3,621–3,645.

Schuur, E.A.G., J. Bockheim, J.G. Canadell, E. Euskirchen, C.B. Field, S.V. Goryachkin, S. Hagemann, P. Kuhry, P.M. Lafleur, H. Lee, and others. 2008. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 58:701–714.

Takahashi, T., W.S. Broecker, and A.E. Bainbridge. 1981. The alkalinity and total carbon concentrations in the world oceans. Pp. 271–286 in Carbon Cycle Modeling. SCOPE vol. 16, B. Bolin, ed, Wiley & Sons, New York.

Tans, P.P. 1998. Why carbon dioxide from fossil fuel burning won’t go away. Pp. 271–291 in Perspectives in Environmental Chemistry. D.L. Macalady, ed., Oxford University Press, New York. (A short and simplified version may be found in: Tans, P.P., and P.S. Bakwin. 1995. Climate change and carbon dioxide forever. Ambio 24, 376–377.)

Walter, K.M., S.A. Zimov, J.P. Chanton, D. Verbyla, and F.S. Chapin III. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75.

WEC (World Energy Council). 2007. Survey of Energy Resources 2007. Available online at: www.worldenergy.org/publications/ (accessed November 20, 2009).

Zachos, J.C., G.R. Dickens, and R.E. Zeebe. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279-283.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.