Oceanography The Official Magazine of
The Oceanography Society
Volume 30 Issue 02

View Issue TOC
Volume 30, No. 2
Pages 29 - 31

Air-Deployable Profiling Floats

Steven R. Jayne Neil M. Bogue
First Paragraph

We describe the development of a small profiling float, the ALAMO (Air-Launched Autonomous Micro-Observer), that observes upper-ocean structure over a year. These floats can be launched from any aircraft equipped with an “A-sized” launch tube, or from the door of any other aircraft. Profiling floats have found wide use in the oceanographic community, from their original design in the World Ocean Circulation Experiment (Davis et al., 1992) to their current widespread usage in the Argo program (Riser et al., 2016). The utility of profiling floats derives from their relative affordability and their autonomous nature once deployed. The ALAMO float works on the same principles as the ALACE (Autonomous Lagrangian Circulation Explorer) profiling float designed by Davis et al. (1992), which developed into the SOLO (Sounding Oceanographic Lagrangian Observer) profiling floats used in the Argo program today (Davis et al., 2001). The ALAMO float represents a natural progression of those earlier designs.

Citation

Jayne, S.R., and N.M. Bogue. 2017. Air-deployable profiling floats. Oceanography 30(2):29–31, https://doi.org/10.5670/oceanog.2017.214.

References

Davis, R.E., T.J. Sherman, and J. Dufour. 2001. Profiling ALACEs and other advances in autonomous subsurface floats. Journal of Atmospheric and Oceanic Technology 18:982–993, https://doi.org/10.1175/1520-0426(2001)018​<0982:PAAOAI>2.0.CO;2.

Davis, R.E., D.C. Webb, L.A. Regier, and J. Dufour. 1992. The Autonomous Lagrangian Circulation Explorer (ALACE). Journal of Atmospheric and Oceanic Technology 9:264–285, https://doi.org/10.1175/1520-0426(1992)009​<0264:TALCE>2.0.CO;2.

Goni, G.J., R.E. Todd, S.R. Jayne, G. Halliwell, S. Glenn, J. Dong, R. Curry, R. Domingues, F. Bringas, L. Centurioni, and others. 2017. Autonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts. Oceanography 30(2):92–103, https://doi.org/10.5670/oceanog.2017.227.

Klatt, O., O. Boebel, and E. Fahrbach. 2007. A profiling float’s sense of ice. Journal of Atmospheric and Oceanic Technology 24:1,301–1,308, https://doi.org/10.1175/JTECH2026.1.

Mrvaljevic, R.K., P.G. Black, L.R. Centurioni, Y.-T. Chang, E.A. D’Asaro, S.R. Jayne, C.M. Lee, R.-C. Lien, I.-I. Lin, J. Morzel, and others. 2013. Observations of the cold wake of Typhoon Fanapi (2010). Geophysical Research Letters 40:316–321, https://doi.org/10.1029/2012GL054282.

Riser, S.C., H.J. Freeland, D. Roemmich. S. Wijffels, A. Troisi, M. Belbéoch, D. Gilbert, J. Xu, S. Pouliquen, A. Thresher, and others. 2016. Fifteen years of ocean observations with the global Argo array. Nature Climate Change 5:145–153, https://doi.org/10.1038/nclimate2872.

Sanabia, E.R., B.S. Barrett, P.G. Black, S. Chen, and J.A. Cummings. 2013. Real-time upper-ocean temperature observations from aircraft during operational hurricane reconnaissance missions: AXBT demonstration project year one results. Weather and Forecasting 28:1,404–1,422, https://doi.org/10.1175/WAF-D-12-00107.1.

Sanford, T.B., J.F. Price, and J.B. Girton. 2011. Upper ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. Journal of Physical Oceanography 41:1,041–1,056, https://doi.org/10.1175/2010JPO4313.1.