Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 04

View Issue TOC
Volume 26, No. 4
Pages 52 - 67

OpenAccess

Advances in Physical, Biological, and Coupled Ocean Models During the US GLOBEC Program

By Enrique N. Curchitser , Harold P. Batchelder, Dale B. Haidvogel, Jerome Fiechter, and Jeffrey Runge  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

From the planning days preceding the establishment of the US Global Ocean Ecosystem Dynamics (GLOBEC) program, modeling was recognized as one of the program’s pillars. In particular, predictions of future ecosystem states in an evolving climate system required new interdisciplinary approaches that brought together physicists, biologists, modelers, and observational scientists. The GLOBEC program coincided with, took advantage of, and contributed to significant advances in ocean modeling capabilities. During the GLOBEC years, computer power increased substantially to the point where coupled physical-biological models, at resolutions where important interactions are resolved, became feasible. Ocean models were maturing so that complex coastal processes were explicitly represented, and advances in different ways of modeling the biosphere, from Lagrangian individuals to Eulerian community-based, multitrophic models, were emerging. The US GLOBEC program addressed the question: How can we use all these developments to help us understand how ecosystems will respond to climate change? This paper includes a review of state-of-the-science modeling at the onset of the GLOBEC program and highlights the evolution of physical and biological models used for the program’s target regions and species throughout the GLOBEC years, 1992–2012.

Citation

Curchitser, E.N., H.P. Batchelder, D.B. Haidvogel, J. Fiechter, and J. Runge. 2013. Advances in physical, biological, and coupled ocean models during the US GLOBEC program. Oceanography 26(4):52–67, https://doi.org/10.5670/oceanog.2013.75.

References
    Ballerini, T., E.E. Hofmann, D.G. Ainley, K. Daly, M. Marrari, C.A. Ribic, W.O. Smith Jr., and J.H. Steele. In press. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf. Progress in Oceanography, https://doi.org/10.1016/j.pocean.2013.11.007.
  1. Barange, M., I. Allen, E. Allison, M.-C. Badjeck, J. Blanchard, B. Drakeford, N.K. Dulvy, J. Harle, R. Holmes, J. Holt, and others. 2011. Predicting the impacts and socio-economic consequences of climate change on global marine ecosystems and fisheries: The QUEST_Fish Framework. Pp. 29–59 in World Fisheries: A Social-Ecological Analysis, 1st ed. R.E. Ommer, R.I. Perry, K. Cochrane, and P. Cury, eds, Blackwell Publishing Ltd, https://doi.org/10.1002/9781444392241.ch3.
  2. Barange, M.A., J.G. Field, R.H. Harris, E. Hofmann, R.I. Perry, and F.E. Werner, eds. 2010. Global Change and Marine Ecosystems. Oxford University Press, 464 pp.
  3. Batchelder, H.P. 2006. Forward-in-Time-/Backward-in-Time-Trajectory (FITT/BITT) modeling of particles and organisms in the coastal ocean. Journal of Atmospheric and Oceanic Technology 23:727–741, https://doi.org/10.1175/JTECH1874.1.
  4. Batchelder, H.P., J.A. Barth, P.M. Kosro, P.T. Strub, R.D. Brodeur, W.T. Peterson, C.T. Tynan, M.D. Ohman, L.W. Bostford, T.M. Powell, and others. 2002a. The GLOBEC Northeast Pacific California Current System Program. Oceanography 15(2):36–47, https://doi.org/10.5670/oceanog.2002.20.
  5. Batchelder, H.P., C.A. Edwards, and T.M. Powell. 2002b. Individual-based models of copepod populations in coastal upwelling regions: Implications of physiologically and environmentally influenced diel vertical migration on demographic success and nearshore retention. Progress in Oceanography 53:307–333, https://doi.org/10.1016/S0079-6611(02)00035-6.
  6. Burke, B.J., W.T. Peterson, B.R. Beckman, C. Morgan, E.A. Daly, and M. Litz. 2013. Multivariate models of adult Pacific salmon returns. PLoS ONE 8(1):e54134, https://doi.org/10.1371/journal.pone.0054134.
  7. Chen, C., H. Huang, R.C. Beardsley, H. Liu, Q. Xu, and G. Cowles. 2007. A finite-volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models. Journal of Geophysical Research 112, C03018, https://doi.org/10.1029/2006JC003485.
  8. Chen, C., H. Huang, R.C. Beardsley, Q. Xu, R. Limeburner, G.W Cowles, Y. Sun, J. Qi, and H. Lin. 2011. Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM. Journal of Geophysical Research 116, C12010, https://doi.org/10.1029/2011JC007054.
  9. Christensen, A., U. Daewel, H. Jensen, H. Mosegaard, M. St. John, and C. Schrum. 2007. Hydrodynamic backtracking of fish larvae by individual-based modelling. Marine Ecology Progress Series 347:221–232, https://doi.org/10.3354/meps06980.
  10. Churchill, J.H., J. Runge, and C. Chen. 2011. Processes controlling retention of spring-spawned Atlantic cod (Gadus morhua) in the western Gulf of Maine and their relationship to an index of recruitment success. Fisheries Oceanography 20:32–56, https://doi.org/10.1111/j.1365-2419.2010.00563.x.
  11. Coyle, K.O., W. Cheng, S.L. Hinckley, E.J. Lessard, T. Whitledge, A.J. Hermann, and K. Hedstrom. 2012. Model and field observations of effects of circulation on the timing and magnitude of nitrate utilization and production on the northern Gulf of Alaska shelf. Progress in Oceanography 103:16–41, https://doi.org/10.1016/j.pocean.2012.03.002.
  12. Curchitser, E.N., D.B. Haidvogel, A.J. Hermann, E. Dobbins, T.M. Powell, and A. Kaplan. 2005. Multi-scale modeling of the North Pacific Ocean: Assessment of simulated basin-scale variability (1996–2003). Journal of Geophysical Research 110, C11021, https://doi.org/10.1029/2005JC002902.
  13. Daly, K.L. 1990. Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnology and Oceanography 35:1,564–1,576, https://doi.org/10.4319/lo.1990.35.7.1564.
  14. Davis, C.S. 1984. Predatory control of copepod seasonal cycles on Georges Bank. Marine Biology 82:31–40, https://doi.org/10.1007/BF00392761.
  15. deYoung, B., M. Heath, F. Werner, F. Chai, B. Megrey, and P. Monfray. 2004. Challenges of modeling ocean basin ecosystems. Science 304:1,463–1,466, https://doi.org/10.1126/science.1094858.
  16. deYoung, B., F. Werner, H. Batchelder, F. Carlotti, Ø. Fiksen, E.E. Hofmann, S. Kim, H. Yamazaki, and M. Kishi. 2010. Dynamics of marine ecosystems: Integration through models of physical-biological interactions. Pp. 89–128 in Marine Ecosystems and Global Change. M. Barange, J.G. Field, R.H. Harris, E. Hofmann, R.I. Perry, and F. Werner, eds, Oxford University Press.
  17. Di Lorenzo, E., V. Combes, J.E. Keister, P.T. Strub, A.C. Thomas, P.J.S. Franks, M.D. Ohman, J.C. Furtado, A. Bracco, S.J. Bograd, and others. 2013. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography 26(4):68–81, https://doi.org/10.5670/oceanog.2013.76.
  18. Di Lorenzo, E., N. Schneider, K.M. Cobb, P.J.S. Franks, K. Chhak, A.J. Miller, J.C. Williams, S.J. Bograd, H. Arango, E. Curchitser, and others. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters 35, L08607, https://doi.org/10.1029/2007GL032838.
  19. Dorman, J.G., T.M. Powell, W.J. Sydeman, and S.J. Bograd. 2011. Advection and starvation cause krill (Euphausia pacifica) decreases in 2005 Northern California coastal populations: Implications from a model study. Geophysical Research Letters 38, L04605, https://doi.org/10.1029/2010GL046245.
  20. Drake, P.T., C.A. Edwards, and J.A. Barth. 2011. Dispersion and connectivity estimates along the US west coast from a realistic numerical model. Journal of Marine Research 69:1–37, https://doi.org/10.1357/002224011798147615.
  21. Fiechter, J., G. Broquet, A.M. Moore, and H.G. Arango. 2011. A data assimilative, coupled physical-biological model for the Coastal Gulf of Alaska. Dynamics of Atmospheres and Oceans 51:75–98, https://doi.org/10.1016/j.dynatmoce.2011.01.002.
  22. Fiechter, J., and A.M. Moore. 2009. Interannual spring bloom variability and Ekman pumping in the coastal Gulf of Alaska. Journal of Geophysical Research 114, C06004, https://doi.org/10.1029/2008JC005140.
  23. Fiechter, J., and A.M. Moore. 2012. Iron limitation impact on eddy-induced ecosystem variability in the coastal Gulf of Alaska. Journal of Marine Systems 92:1–15, https://doi.org/10.1016/j.jmarsys.2011.09.012.
  24. Fogarty, M.J., L.W. Botsford, and F.E. Werner. 2013. Legacy of the US GLOBEC program: Current and potential contributions to marine ecosystem-based management. Oceanography 26(4):116–127, https://doi.org/10.5670/oceanog.2013.79.
  25. Francis, T., M. Scheuerell, R. Brodeur, P. Levin, J. Ruzicka, N. Tolimieri, and W. Peterson. 2012. Climate shifts the interaction web of a marine plankton community. Global Change Biology 18:2,498–2,508, https://doi.org/10.1111/j.1365-2486.2012.02702.x.
  26. Fritsen, C.H., J. Memmott, and F.J. Stewart. 2008. Inter-annual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica. Deep Sea Research Part II 55:2,059–2,067, https://doi.org/10.1016/j.dsr2.2008.04.034.
  27. GLOBEC. 1991. Theory and Modeling in GLOBEC: A First Report to the GLOBEC Steering Committee from the Working Group on Theory and Modeling. US GLOBEC Report No. 0, 9 pp.
  28. GLOBEC. 2007. Report of a GLOBEC/SPACC Workshop on Characterizing and Comparing the Spawning Habitats of Small Pelagic Fish, January 12–13, 2004, Concepcion, Chile. US GLOBEC Report No. 21, 50 pp.
  29. Haidvogel, D.B., H. Arango, W.P. Budgell, B.D. Cornuelle, E.N. Curchitser, E. Di Lorenzo, K. Fennel, W.R. Geyer, A.J. Hermann, L. Lanerolle, and others. 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics 227:3,595–3,624, https://doi.org/10.1016/j.jcp.2007.06.016.
  30. Haidvogel, D.B., E. Turner, E.N. Curchitser, and E.E. Hofmann. 2013. Looking forward: Transdisciplinary modeling, environmental forecasting, and management. Oceanography 26(4):128–135, https://doi.org/10.5670/oceanog.2013.80.
  31. Heppell, S.S., J.A. Barth, and H. Reiff. 2008. Size and Spacing of Marine Reserves Workshop Report. Science and Technical Advisory Committee report to OPAC (Oregon Ocean Policy Advisory Council), 88 pp. Available online at: http://www.oregon.gov/LCD/OPAC/docs/resources/Oregon_Size_and_Spacing_Workshop_Report.pdf (accessed November 5, 2013).
  32. Hermann, A.J., E.N. Curchitser, E.L. Dobbins, and D.B. Haidvogel, 2009a. A comparison of remote versus local influence of El Niño on the coastal circulation of the Northeast Pacific. Deep Sea Research Part II 56:2,427–2,443, https://doi.org/10.1016/j.dsr2.2009.02.005.
  33. Hermann, A.J., S. Hinckley, E.L. Dobbins, D.B. Haidvogel, N.A. Bond, C. Mordy, N. Kachel, and P.J. Stabeno. 2009b. Quantifying cross-shelf and vertical nutrient flux in the Coastal Gulf of Alaska with a spatially nested, coupled biophysical model. Deep Sea Research Part II 56:2,474–2,486, https://doi.org/10.1016/j.dsr2.2009.02.008.
  34. Hinckley, S., K.O. Coyle, G. Gibson, A.J. Hermann, and E.L. Dobbins. 2009. A biophysical NPZ model with iron for the Gulf of Alaska: Reproducing the differences between an oceanic HNLC ecosystem and a classical northern temperate shelf ecosystem. Deep Sea Research Part II 56:2,520–2,536, https://doi.org/10.1016/j.dsr2.2009.03.003.
  35. Hjort, J. 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapport et Process-Verbaux, Conseil Permanent International pour l’Exploration de la Mer, vol. XX, 20, 228 pp. Available online at: http://info.ices.dk/products/Historical/RPV020.pdf (accessed December 31, 2013).
  36. Hofmann, E.E., and C.M. Lascara. 2000. Modeling the growth dynamics of Antarctic krill Euphausia superba. Marine Ecology Progress Series 194:219–231, https://doi.org/10.3354/meps194219.
  37. Huret, M., J.A. Runge, C. Chen, G. Cowles, Q. Xu, and J.M. Pringle. 2007. Dispersal modeling of early life stages: Sensitivity with application to Atlantic cod in the western Gulf of Maine. Marine Ecology Progress Series 347:261–274, https://doi.org/10.3354/meps06983.
  38. Itoh, S., T. Saruwatari, H. Nishikawa, I. Yasuda, K. Komatsu, A. Tsuda, T. Setou, and M. Shimizu. 2011. Environmental variability and growth histories of larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus) near the frontal area of the Kuroshio. Fisheries Oceanography 20:114–124, https://doi.org/10.1111/j.1365-2419.2011.00572.x.
  39. Ji, R., C.J. Ashjian, R.G. Campbell, C. Chen, G. Gao, C.S. Davis, G.W. Cowles, and R.C. Beardsley. 2012b. Life history and biogeography of Calanus copepods in the Arctic Ocean: An individual-based modeling study. Progress in Oceanography 96:40–56, https://doi.org/10.1016/j.pocean.2011.10.001.
  40. Ji, R., C. Davis, C. Chen, and R. Beardsley. 2008a. Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges Bank: A 3-D biological-physical modeling study. Journal of Marine Systems 73:31–47, https://doi.org/10.1016/j.jmarsys.2007.08.002.
  41. Ji, R., C.S. Davis, C. Chen, and R.C. Beardsley. 2009. Life history traits and spatiotemporal distributional patterns of copepod populations in the Gulf of Maine-Georges Bank region. Marine Ecology Progress Series 384:187–205, https://doi.org/10.3354/meps08032.
  42. Ji, R., C. Davis, C. Chen, D.W. Townsend, D.G. Mountain, and R.C. Beardsley. 2008b. Modeling the influence of low-salinity water inflow on winter-spring phytoplankton dynamics in the Nova Scotian Shelf–Gulf of Maine region. Journal of Plankton Research 30:1,399–1,416, https://doi.org/10.1093/plankt/fbn091.
  43. Ji, R., C. Stegert, and C.S. Davis. 2012a. Sensitivity of copepod populations to bottom-up and top-down forcing: A modeling study in the Gulf of Maine region. Journal of Plankton Research 35:66–79, https://doi.org/10.1093/plankt/fbs070.
  44. Johnson, C.L., A.W. Leising, J.A. Runge, E.J. Head, P. Pepin, S. Plourde, and E.G. Durbin. 2008. Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES Journal of Marine Science 65:339–350, https://doi.org/10.1093/icesjms/fsm171.
  45. Johnson, C., J. Pringle, and C. Chen. 2006. Transport and retention of dormant copepods in the Gulf of Maine. Deep Sea Research Part II 53:2,520–2,536, https://doi.org/10.1016/j.dsr2.2006.08.016.
  46. Keister, J.E., E. Di Lorenzo, C.A. Morgan, V. Combes, and W.T. Peterson. 2011. Zooplankton species composition is linked to ocean transport in the Northern California Current. Global Change Biology 17:2,498–2,511, https://doi.org/10.1111/j.1365-2486.2010.02383.x.
  47. Kristiansen, T., K.F. Drinkwater, R.G. Lough, and S. Sundby. 2011. Recruitment variability in North Atlantic cod and match-mismatch dynamics. PLoS ONE 6(3):e17456, https://doi.org/10.1371/journal.pone.0017456.
  48. Kristiansen, R., Ø. Fiksen, and A. Folkvord. 2007. Modelling feeding, growth, and habitat selection in larval Atlantic cod (Gadus morhua): Observations and model predictions in a macrocosm environment. Canadian Journal of Fisheries and Aquatic Sciences 64:136–151, https://doi.org/10.1139/f06-176.
  49. Kristiansen, T., R.G. Lough, F.E. Werner, E.A. Broughton, and L.J. Buckley. 2009. Individual-based modeling of feeding ecology and prey selection of larval cod on Georges Bank. Marine Ecology Progress Series 376:227–243, https://doi.org/10.3354/meps07796.
  50. Leggett, W.C., and E. Deblois. 1994. Recruitment in marine fishes: Is it regulated by starvation and predation in the egg and larval stage? Netherlands Journal of Sea Research 32:119–134, https://doi.org/10.1016/0077-7579(94)90036-1.
  51. Leising, A.W., and P.J.S. Franks. 1999. Larval Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) growth on Georges Bank: A model with temperature, prey size, and turbulence forcing. Canadian Journal of Fisheries and Aquatic Sciences 56:25–36, https://doi.org/10.1139/f98-144.
  52. Li, X.W., D.J. McGillicuddy, E.G. Durbin, and P.H. Wiebe. 2006. Biological control of the vernal population increase of Calanus finmarchicus on Georges Bank. Deep Sea Research Part II 53:2,632–2,655, https://doi.org/10.1016/j.dsr2.2006.08.011.
  53. Lindsey, B.J. 2014. Bioenergetics and behavior of the krill Euphausia pacifica in the California Current System off the Oregon coast. PhD dissertation, Oregon State University, Corvallis, OR, 186 pp.
  54. Lough, R.G., L.J. Buckley, F.E. Werner, J.A. Quinlan, and K. Pehrson Edwards. 2005. A general biophysical model of larval cod (Gadus morhua) growth applied to populations on Georges Bank. Fisheries Oceanography 14:241–262, https://doi.org/10.1111/j.1365-2419.2005.00330.x.
  55. Lough, R.G., and D.C. Potter. 1993. Vertical distribution patterns and diel migrations of larval and juvenile haddock Melanogrammus aeglefinus and Atlantic cod Gadus morhua. Fisheries Bulletin 91:281–303. Available online at: http://fishbull.noaa.gov/912/lough.pdf (accessed December 31, 2013).
  56. Lowe, A.T., R.M. Ross, L.B. Quetin, M. Vernet, and C.H. Fritsen. 2012. Simulating larval Antarctic krill growth and condition factor during fall and winter in response to environmental variability. Marine Ecology Progress Series 452:27–43, https://doi.org/10.3354/meps09409.
  57. Lynch, D., J. Ip, C. Naimie, and F. Werner. 1996. Comprehensive coastal circulation model with application to the Gulf of Maine. Continental Shelf Research 16:875–906, https://doi.org/10.1016/0278-4343(95)00028-3.
  58. Lynch, D.R., C.E. Naimie, J. Ip, C. Lewis, F.E. Werner, R.A. Luettich, Jr., B.O. Blanton, J.A. Quinlan, D. McGillicuddy, J. Ledwell, and others. 2001. Real-time data assimilative modeling on Georges Bank. Oceanography 14(1):65–77, https://doi.org/10.5670/oceanog.2001.50.
  59. Macias, D., P.J.S. Franks, M.D. Ohman, and M.R. Landry. 2012. Modeling the effects of coastal wind- and wind-stress curl-driven upwellings on plankton dynamics in the Southern California current system. Journal of Marine Systems 94:107–119, https://doi.org/10.1016/j.jmarsys.2011.11.011.
  60. Maps, F., J.A. Runge, A. Leising, A.J. Pershing, N.R. Record, S. Plourde, and J.J. Pierson. 2012. Modelling the timing and duration of dormancy in populations of Calanus finmarchicus from the Northwest Atlantic shelf. Journal of Plankton Research 34:36–54, https://doi.org/10.1093/plankt/fbr088.
  61. McGillicuddy, D.J., V.K. Kosnyrev, J.P. Ryan, and J.A. Yoder. 2001. Covariation of mesoscale ocean color and sea-surface temperature patterns in the Sargasso Sea. Deep Sea Research Part II 48:1,823–1,836, https://doi.org/10.1016/S0967-0645(00)00164-8.
  62. McGillicuddy, D.J., D.R. Lynch, A.M. Moore, W.C. Gentleman, C.S. Davis, and C.J. Meise. 1998. An adjoint data assimilation approach to diagnosis of physical and biological controls on Pseudocalanus spp. in the Gulf of Maine-Georges Bank region. Fisheries Oceanography 7:205–218, https://doi.org/10.1046/j.1365-2419.1998.00066.x.
  63. Miller, C.B., D.R. Lynch, F. Carlotti, W.C. Gentleman, and C.V.W. Lewis. 1998. Coupling of an individual-based population dynamic model of Calanus finmarchicus to a circulation model for the Georges Bank region. Fisheries Oceanography 7:219–234, https://doi.org/10.1046/j.1365-2419.1998.00072.x.
  64. Mitarai, S., D.A. Siegel, J.R. Watson, C. Dong, and J.C. McWilliams. 2009. Quantifying connectivity in the coastal ocean with application to the Southern California Bight. Journal of Geophysical Research 114, C10026, https://doi.org/10.1029/2008JC005166.
  65. Murphy, E.J., R.D. Cavanagh, E.E. Hofmann, S.L. Hill, A.J. Constable, D.P. Costa, M.H. Pinkerton, N.M. Johnston, P.N. Trathan, J.M. Klinck, and others. 2012. Developing integrated models of Southern Ocean food webs: Including ecological complexity, accounting for uncertainty and the importance of scale. Progress in Oceanography 102:74–92, https://doi.org/10.1016/j.pocean.2012.03.006.
  66. Murphy, E.J., E.E. Hofmann, J.L. Watkins, N.M. Johnston, A. Piñones, T. Ballerini, S.L. Hill, P.N. Trathan, G.A. Tarling, R.A. Cavanagh, and others. 2013. Comparison of the structure and function of Southern Ocean regional ecosystems: The Antarctic Peninsula and South Georgia. Journal of Marine Systems 109–110:22–42, https://doi.org/10.1016/j.jmarsys.2012.03.011.
  67. Naimie, C.E., J.W. Loder, and D.R. Lynch. 1994. Seasonal variation of the three-dimensional residual circulation on Georges Bank. Journal of Geophysical Research 99:15,967–15,989, https://doi.org/10.1029/94JC01202.
  68. Neuheimer, A.B., W.C. Gentleman, C.L. Galloway, and C.L. Johnson. 2009. Modeling larval Calanus finmarchicus on Georges Bank: Time-varying mortality rates and a cannibalism hypothesis. Fisheries Oceanography 18:147–160, https://doi.org/10.1111/j.1365-2419.2009.00503.x.
  69. Payne, M.R., S.D. Ross, L.W. Clausen, P. Munk, H. Mosegaard, and R.D.M. Nash. 2013. Recruitment decline in North Sea herring is accompanied by reduced larval growth rates. Marine Ecology Progress Series 489:197–211, https://doi.org/10.3354/meps10392.
  70. Petersen, C.H., P.T. Drake, C.A. Edwards, and S. Ralston. 2010. A numerical study of inferred rockfish (Sebastes spp.) larval dispersal along the central California coast. Fisheries Oceanography 19:21–41, https://doi.org/10.1111/j.1365-2419.2009.00526.x.
  71. Piñones, A., E.E. Hofmann, K.L. Daly, M.S. Dinniman, and J.M. Klinck. 2013. Modeling the remote and local connectivity of Antarctic krill populations along the western Antarctic Peninsula. Marine Ecology Progress Series 481:69–92, https://doi.org/10.3354/meps10256.
  72. Piñones, A., E.E. Hofmann, M.S. Dinniman, and J.M. Klinck. 2011. Lagrangian simulation of transport pathways and residence times along the western Antarctic Peninsula. Deep Sea Research Part II 58:1,524–1,539, https://doi.org/10.1016/j.dsr2.2010.07.001.
  73. Powell, T.M., C.V.W. Lewis, E.N. Curchitser, D.B. Haidvogel, A.J. Hermann, and E.L. Dobbins. 2006. Results from a three-dimensional, nested biological-physical model of the California Current System and comparisons with statistics from satellite imagery. Journal of Geophysical Research 111, C07018, https://doi.org/10.1029/2004JC002506.
  74. Riley, G.A. 1942. The relationship of vertical turbulence and spring diatom flowerings. Journal of Marine Research 5:67–87.
  75. Riley, G.A. 1946. Factors controlling phytoplankton populations on Georges Bank. Journal of Marine Research 6:54–73.
  76. Riley, G.A. 1947. A theoretical analysis of the zooplankton population on Georges Bank. Journal of Marine Research 6:104–113.
  77. Runge, J.A., A.I. Kovach, J.H. Churchill, L.A. Kerr, J.R. Morrison, R.C. Beardsley, D.L. Berlinsky, C. Chen, S.X. Cadrin, C.S. Davis, and others. 2010. Understanding climate impacts on recruitment and spatial dynamics of Atlantic cod in the Gulf of Maine: Integration of observations and modeling. Progress in Oceanography 87:251–263, https://doi.org/10.1016/j.pocean.2010.09.016.
  78. Runge, J.A., S. Plourde, P. Joly, B. Niehoff, and E. Durbin. 2006. Characteristics of egg production of the planktonic copepod, Calanus finmarchicus, on Georges Bank: 1994–1999. Deep Sea Research Part II 53:2,618–2,631, https://doi.org/10.1016/j.dsr2.2006.08.010.
  79. Ruzicka, J.J., R.D. Brodeur, R.L. Emmett, J.H. Steele, J.E. Zamon, C.A. Morgan, A.C. Thomas, and T.C. Wainwright. 2012. Interannual variability in the Northern California Current food web structure: Changes in energy flow pathways and the role of forage fish, eupausiids, and jellyfish. Progress in Oceanography 102:19–41, https://doi.org/10.1016/j.pocean.2012.02.002.
  80. Ruzicka, J.J., J.H. Steele, S.K. Gaichas, T. Ballerini, D.J. Gifford, R.D. Brodeur, and E.E. Hofmann. 2013. Analysis of energy flow in US GLOBEC ecosystems using end-to-end models. Oceanography 26(4):82–97, https://doi.org/10.5670/oceanog.2013.77.
  81. Steele, J.H. 1998. From carbon flux to regime shift. Fisheries Oceanography 7:176–181, https://doi.org/10.1046/j.1365-2419.1998.00069.x.
  82. Steele, J.H., K. Aydin, D.J. Gifford, and E.E. Hofmann, 2013. Construction kits or virtual worlds; Management applications of E2E models. Journal of Marine Systems 109:103–108 https://doi.org/10.1016/j.jmarsys.2011.10.016.
  83. Steele, J.H., J.S. Collie, J. Bisagni, M. Fogarty, D. Gifford, M. Link, M. Sieracki, B. Sullivan, A. Beet, D. Mountain, and others. 2007. Balancing end-to-end budgets of the Georges Bank ecosystem. Progress in Oceanography 74:423–448, https://doi.org/10.1016/j.pocean.2007.05.003.
  84. Steele, J.H., and D.J. Gifford. 2010. Reconciling end-to-end and population concepts for marine ecosystems. Journal of Marine Systems 83:99–103, https://doi.org/10.1016/j.jmarsys.2010.06.006.
  85. Stegert, C., R. Ji, and C.S. Davis. 2012. Processes controlling seasonality and spatial distribution of Centropages typicus: A modeling study in the Gulf of Maine/Georges Bank region. Journal of Plankton Research 34:18–35, https://doi.org/10.1093/plankt/fbr084.
  86. Stock, C.A., M.A. Alexander, N.A. Bond, K.M. Brander, W.W.L. Cheung, E.N. Curchitser, T.L. Delworth, J.P. Dunne, S.M. Griffies, M.A. Haltuch, and others. 2011. On the use of IPCC-class models to assess the impact of climate on living marine resources. Progress in Oceanography 88:1–27, https://doi.org/10.1016/j.pocean.2010.09.001.
  87. Stow, C.A., J. Jolliff, D.J. McGillicuddy, S.C. Doney, J.I. Allen, M.A.M. Friedrichs, K.A. Rose, and P. Wallhead. 2009. Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems 76:4–15, https://doi.org/10.1016/j.jmarsys.2008.03.011.
  88. Tremblay, M.J., J.W. Loder, F.E. Werner, C.E. Naimie, F.H. Page, and M.M. Sinclair. 1994. Drift of sea scallop larvae Placopecten magellanicus on Georges Bank: A model study of the roles of mean advection, larval behavior and larval origin. Deep Sea Research Part II 41:7–49, https://doi.org/10.1016/0967-0645(94)90061-2.
  89. Turner, E., D.B. Haidvogel, E.E. Hofmann, H.P. Batchelder, M.J. Fogarty, and T. Powell. 2013. US GLOBEC: Program goals, approaches, and advances. Oceanography 26(4):12–21, https://doi.org/10.5670/oceanog.2013.72.
  90. Werner, F.E., R.K. Cowen, and C.B. Paris. 2007. Coupled biological and physical models: Present capabilities and necessary developments for future studies of population connectivity. Oceanography 20(3):54–69, https://doi.org/10.5670/oceanog.2007.29.
  91. Werner, F.E., B.R. MacKenzie, R.I. Perry, R.G. Lough, C.E. Naimie, B.O. Blanton, and J.A. Quinlan. 2001. Larval trophodynamics, turbulence, and drift on Georges Bank: A sensitivity analysis of cod and haddock. Scientia Marina 65(Suppl. 1):99–115.
  92. Werner, F.E., F.H. Page, D.R. Lynch, J.W. Loder, R.G. Lough, R.I. Perry, D.A. Greenberg, and M.M. Sinclair. 1993. Influences of mean advection and simple behavior on the distribution of cod and haddock early life stages on Georges Bank. Fisheries Oceanography 2:43–64, https://doi.org/10.1111/j.1365-2419.1993.tb00120.x.
  93. Werner, F.E., R.I. Perry, R.G. Lough, and C.E. Naimie. 1996. Trophodynamic and advective influences on Georges Bank larval cod and haddock. Deep Sea Research Part II 43:1,793–1,822, https://doi.org/10.1016/S0967-0645(96)00042-2.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.