Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 04

View Issue TOC
Volume 26, No. 4
Pages 22 - 33

OpenAccess

Advances in Marine Ecosystem Dynamics from US GLOBEC: The Horizontal-Advection Bottom-up Forcing Paradigm

By Emanuele Di Lorenzo , David Mountain, Harold P. Batchelder , Nicholas Bond , and Eileen E. Hofmann 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

A primary focus of the US Global Ocean Ecosystem Dynamics (GLOBEC) program was to identify the mechanisms of ecosystem response to large-scale climate forcing under the assumption that bottom-up forcing controls a large fraction of marine ecosystem variability. At the beginning of GLOBEC, the prevailing bottom-up forcing hypothesis was that climate-induced changes in vertical transport modulated nutrient supply and surface primary productivity, which in turn affected the lower trophic levels (e.g., zooplankton) and higher trophic levels (e.g., fish) through the trophic cascade. Although upwelling dynamics were confirmed to be an important driver of ecosystem variability in GLOBEC studies, the use of eddy-resolving regional-scale ocean circulation models combined with field observations revealed that horizontal advection is an equally important driver of marine ecosystem variability. Through a synthesis of studies from the four US GLOBEC regions (Gulf of Alaska, Northern California Current, Northwest Atlantic, and Southern Ocean), a new horizontal-advection bottom-up forcing paradigm emerges in which large-scale climate forcing drives regional changes in alongshore and cross-shelf ocean transport that directly impact ecosystem functions (e.g., productivity, species composition, spatial connectivity). The horizontal advection bottom-up forcing paradigm expands the mechanistic pathways through which climate variability and climate change impact the marine ecosystem. In particular, these results highlight the need for future studies to resolve and understand the role of mesoscale and submesoscale transport processes and their relationship to climate.

Citation

Di Lorenzo, E., D. Mountain, H.P. Batchelder, N. Bond, and E.E. Hofmann. 2013. Advances in marine ecosystem dynamics from US GLOBEC: The horizontal-advection bottom-up forcing paradigm. Oceanography 26(4):22–33, https://doi.org/10.5670/oceanog.2013.73.

References

Armstrong, J.L., K.W. Myers, N.D. Davis, R.V. Walker, D.A. Beauchamp, J.L. Boldt, J. Piccolo, and L.J. Haldorson. 2008. Interannual and spatial feeding patterns of juvenile pink salmon in the Gulf of Alaska in years of low and high survival. Transactions of the American Fisheries Society 137:1,299–1,316, https://doi.org/10.1577/T07-196.1.

Atwood, E., J.T. Duffy-Anderson, J.K. Horne, and C. Ladd. 2010. Influence of mesoscale eddies on ichthyoplankton assemblages in the Gulf of Alaska. Fisheries Oceanography 19:493–507, https://doi.org/10.1111/j.1365-2419.2010.00559.x.

Bailey, K.M., and S.J. Picquelle. 2002. Larval distribution of offshore spawning flatfish in the Gulf of Alaska: Potential transport pathways and enhanced onshore transport during ENSO events. Marine Ecology Progress Series 236:205–217, https://doi.org/10.3354/meps236205.

Ballerini, T., E.E. Hofmann, D.G. Ainley, K. Daly, M. Marrari, C. Ribic, W.O. Smith, and J.H. Steele. In press. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf. Progress in Oceanography, https://doi.org/10.1016/j.pocean.2013.11.007.

Bi, H., W.T. Peterson, and P.T. Strub. 2011. Transport and coastal zooplankton communities in the northern California Current system. Geophysical Research Letters 38, L12607, https://doi.org/10.1029/2011GL047927.

Brown, J., and J. Fiechter. 2012. Quantifying eddy-chlorophyll covariability in the coastal Gulf of Alaska. Dynamics of Atmospheres and Oceans 55–56:1–21, https://doi.org/10.1016/j.dynatmoce.2012.04.001.

Burns, J.M., D.P. Costa, M.A. Fedak, M.A. Hindell, C.J. Bradshaw, N.J. Gales, and D.E. Crocker. 2004. Winter habitat use and foraging behavior of crabeater seals along the western Antarctic Peninsula. Deep Sea Research Part II 51:2,279–2,303, https://doi.org/10.1016/j.dsr2.2004.07.021.

Chapman, D.C., and R.C. Beardsley. 1989. On the origin of shelf water in the Middle Atlantic Bight. Journal of Physical Oceanography 19:389–391, https://doi.org/10.1175/1520-0485(1989)019<0384:OTOOSW>2.0.CO;2.

Chapman, E.W., C.A. Ribic, and W.R. Fraser. 2004. The distribution of seabirds and pinnipeds in Marguerite Bay and their relationship to physical features during austral winter 2001. Deep Sea Research Part II 51:2,261–2,278, https://doi.org/10.1016/j.dsr2.2004.07.005.

Chhak, K.C., E. Di Lorenzo, N. Schneider, and P.F. Cummins. 2009. Forcing of low-frequency ocean variability in the Northeast Pacific. Journal of Climate 22:1,255–1,276, https://doi.org/10.1175/2008JCLI2639.1.

Chiba, S., E. Di Lorenzo, A. Davis, J. E. Keister, B. Taguchi, Y. Sasai, and H. Sugisaki. 2013. Large-scale climate control of zooplankton transport and biogeography in the Kuroshio-Oyashio Extension region. Geophysical Research Letters 40:5,182–5,187, https://doi.org/10.1002/grl.50999.

Combes, V., and E. Di Lorenzo. 2007. Intrinsic and forced interannual variability of the Gulf of Alaska mesoscale circulation. Progress in Oceanography 75:266–286, https://doi.org/10.1016/j.pocean.2007.08.011.

Combes, V., E. Di Lorenzo, and E. Curchitser. 2009. Interannual and decadal variations in cross-shelf transport in the Gulf of Alaska. Journal of Physical Oceanography 39:1,050–1,059, https://doi.org/10.1175/2008JPO4014.1.

Costa, D.P., J.M. Burns, E. Chapman, J. Hildebrand, J.J. Torres, W. Fraser, A. Friedlander, C. Ribic, and P. Halpin. 2007. US SO GLOBEC predator programme. GLOBEC International Newsletter 13(1):62–66.

Coyle, K.O., W. Cheng, S.L. Hinckley, E.J. Lessard, T. Whitledge, A.J. Hermann, and K. Hedstrom. 2012. Model and field observations of effects of circulation on the timing and magnitude of nitrate utilization and production on the northern Gulf of Alaska shelf. Progress in Oceanography 103:16–41, https://doi.org/10.1016/j.pocean.2012.03.002.

Crawford, W.R., P.J. Brickley, T.D. Peterson, and A.C. Thomas. 2005. Impact of Haida Eddies on chlorophyll distribution in the Eastern Gulf of Alaska. Deep Sea Research Part II 52:975–989, https://doi.org/10.1016/j.dsr2.2005.02.011.

Curchitser, E.N., H.P. Batchelder, D.B. Haidvogel, J. Fiechter, and J. Runge. 2013. Advances in physical, biological, and coupled ocean models during the US GLOBEC program. Oceanography 26(4):52–67, https://doi.org/10.5670/oceanog.2013.75.

Daly, K.L. 2004. Overwintering growth and development of larval Euphausia superba: An interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep Sea Research Part II 51:2,139–2,168, https://doi.org/10.1016/j.dsr2.2004.07.010.

Di Lorenzo, E., V. Combes, J.E. Keister, P.T. Strub, A.C. Thomas, P.J.S. Franks, M.D. Ohman, J.C. Furtado, A. Bracco, S.J. Bograd, and others. 2013. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography 26(4):68–81, https://doi.org/10.5670/oceanog.2013.76.

Di Lorenzo, E., and M.D. Ohman. 2013. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proceedings of the National Academy of Sciences of the United States of America 110:2,496–2,499, https://doi.org/10.1073/pnas.1218022110.

Di Lorenzo, E., J. Fiechter, N. Schneider, A. Bracco, A.J. Miller, P.J.S. Franks, S.J. Bograd, A.M. Moore, A.C. Thomas, W. Crawford, and others. 2009. Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophysical Research Letters 36, L14601, https://doi.org/10.1029/2009GL038261.

Di Lorenzo, E., N. Schneider, K.M. Cobb, P.J.S. Franks, K. Chhak, A.J. Miller, J.C. McWilliams, S.J. Bograd, H. Arango, E. Curchitser, and others. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters 35, L08607, https://doi.org/10.1029/2007gl032838.

Dinniman, M.S., and J.M. Klinck. 2004. A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf. Deep Sea Research Part II 51:2,003–2,022, https://doi.org/10.1016/j.dsr2.2004.07.030.

Dinniman, M.S., J.M. Klinck, and E.E. Hofmann. 2012. Sensitivity of Circumpolar Deep Water transport and ice shelf basal melt along the west Antarctic Peninsula to changes in the winds. Journal of Climate 25:4,799–4,816, https://doi.org/10.1175/JCLI-D-11-00307.1.

Doyle, M.J., S.J. Picquelle, K.L. Mier, M.C. Spillane, and N.A. Bond. 2009. Larval fish abundance and physical forcing in the Gulf of Alaska, 1981–2003. Progress in Oceanography 80:163–187, https://doi.org/10.1016/j.pocean.2009.03.002.

Fiechter, J., and A.M. Moore. 2012. Iron limitation impact on eddy-induced ecosystem variability in the coastal Gulf of Alaska. Journal of Marine Systems 92:1–15, https://doi.org/10.1016/j.jmarsys.2011.09.012.

Fiechter, J., A.M. Moore, C.A. Edwards, K.W. Bruland, E. Di Lorenzo, C.V.W. Lewis, T.M. Powell, E.N. Curchitser, and K. Hedstrom. 2009. Modeling iron limitation of primary production in the coastal Gulf of Alaska. Deep-Sea Research Part II 56:2,503–2,519, https://doi.org/10.1016/j.dsr2.2009.02.010

Greene, C.H., and A.J. Pershing. 2007. Climate drives sea change. Science 315:1,084–1,085, https://doi.org/10.1126/science.1136495.

Henson, S.A., and A.C. Thomas. 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I 55:163–176, https://doi.org/10.1016/j.dsr.2007.11.005.

Hofmann, E.E., P.H. Wiebe, D.P. Costa, and J.J. Torres. 2004. An overview of the Southern Ocean Global Ocean Ecosystems Dynamics Program. Deep Sea Research Part II 51:1,921–1,924, https://doi.org/10.1016/j.dsr2.2004.08.007.

Hooff, R.C., and W.T. Peterson. 2006. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the Northern California Current ecosystem. Limnology & Oceanography 51:2,607–2,620, https://doi.org/10.4319/lo.2006.51.6.2607.

Janout, M.A., T.J. Weingartner, S.R. Okkonen, T.E. Whitledge, and D.L. Musgrave. 2009. Some characteristics of Yakutat Eddies propagating along the continental slope of the northern Gulf of Alaska. Deep Sea Research Part II 56:2,444–2,459, https://doi.org/10.1016/j.dsr2.2009.02.006.

Ji, R., C.S. Davis, C. Chen, D.W. Townsend, D.G. Mountain, and R.C. Beardsley. 2008. Modeling the influence of low-salinity water inflow on winter-spring phytoplankton dynamics in the Nova Scotian Shelf–Gulf of Maine region. Journal of Plankton Research 30:1,399–1,416, https://doi.org/10.1093/plankt/fbn091.

Ji, R., C. Stegert, and C. Davis. 2012. Sensitivity of copepod populations to bottom-up and top-down forcing: A modeling study in the Gulf of Maine region. Journal of Plankton Research 35:66–79, https://doi.org/10.1093/plankt/fbs070.

Keister, J.E., E. Di Lorenzo, C.A. Morgan, V. Combes, and W.T. Peterson. 2011. Zooplankton species composition is linked to ocean transport in the Northern California Current. Global Change Biology 17:2,498–2,511, https://doi.org/10.1111/j.1365-2486.2010.02383.x.

King, J.R., V.N. Agostini, C.J. Harvey, G.A. McFarlane, M.G.G. Foreman, J.E. Overland, E. Di Lorenzo, N.A. Bond, and K.Y. Aydin. 2011. Climate forcing and the California Current ecosystem. ICES Journal of Marine Science 68:1,199–1,216, https://doi.org/10.1093/icesjms/fsr009.

Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky, and others. 2001. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society 82:247–268, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

Kwok, R., and J.C. Comiso. 2002. Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. Journal of Climate 15:487–501, https://doi.org/10.1175/1520-0442(2002)015<0487:SOCASI>2.0.CO;2.

Ladd, C., C.W. Mordy, N.B. Kachel, and P.J. Stabeno. 2007. Northern Gulf of Alaska eddies and associated anomalies. Deep Sea Research Part I 54:487–509, https://doi.org/10.1016/j.dsr.2007.01.006.

Marrari, M., K.L. Daly, and C. Hu. 2008. Spatial and temporal variability of SeaWiFS derived chlorophyll distributions west of the Antarctic Peninsula: Implications for krill production. Deep Sea Research Part II 55:377–392, https://doi.org/10.1016/j.dsr2.2007.11.011.

Marshall, G.J., A. Orr, N.P. van Lipzig, and J.C. King. 2006. The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. Journal of Climate 19:5,388–5,404, https://doi.org/10.1175/JCLI3844.1.

Martin, J.H., R.M. Gordon, S. Fitzwater, and W.W. Broenkow. 1989. Vertex: Phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Research Part A 36:649–680, https://doi.org/10.1016/0198-0149(89)90144-1.

Mountain, D.G., and J. Kane. 2010. Major changes in the Georges Bank ecosystem, 1980s to the 1990s. Marine Ecology Progress Series 398:81–91, https://doi.org/10.3354/meps08323.

Niiler, P.P., N.A. Maximenko, and J.C. McWilliams. 2003. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophysical Research Letters 30, 2164, https://doi.org/10.1029/2003GL018628.

Okkonen, S.R., G.A. Jacobs, J.E. Metzger, H.E. Hurlburt, and J.F. Shriver. 2001. Mesoscale variability in the boundary currents of the Alaska Gyre. Continental Shelf Research 21:1,219–1,236, https://doi.org/10.1016/S0278-4343(00)00085-6.

Okkonen, S.R., T.J. Weingartner, S.L. Danielson, D.L. Musgrave, and G.M. Schmidt. 2003. Satellite and hydrographic observations of eddy-induced shelf-slope exchange in the northwestern Gulf of Alaska. Journal of Geophysical Research 108, 3033, https://doi.org/10.1029/2002JC001342.

Peterson, W.T. 2009. Copepod species richness as an indicator of long-term changes in the coastal ecosystem of the Northern California Current. CalCOFI Report 50:73–81. Available online at: http://calcofi.org/publications/calcofireports/v50/73-81_Peterson.pdf (accessed December 21, 2013).

Piñones, A., E.E. Hofmann, K.L. Daly, M.S. Dinniman, and J.M. Klinck. 2013a. Modeling environmental controls on the transport and fate of early life stages of Antarctic krill (Euphausia superba) on the western Antarctic Peninsula continental shelf. Deep Sea Research Part I 82:17–31, https://doi.org/10.1016/j.dsr.2013.08.001.

Piñones, A., E.E. Hofmann, K.L. Daly, M.S. Dinniman, and J.M. Klinck. 2013b. Modeling the remote and local connectivity of Antarctic krill populations along the western Antarctic Peninsula. Marine Ecology Progress Series 481:69–92, https://doi.org/10.3354/meps10256.

Piñones, A., E.E. Hofmann, M.S. Dinniman, and J.M. Klinck. 2011. Lagrangian simulation of transport pathways and residence times along the western Antarctic Peninsula. Deep Sea Research Part II 58:1,524–1,539, https://doi.org/10.1016/j.dsr2.2010.07.001.

Prézelin, B.B., E.E. Hofmann, M. Moline, and J.M. Klinck. 2004. Physical forcing of phytoplankton community structure and primary production in continental shelf waters of the western Antarctic Peninsula. Journal of Marine Research 62:419–460, https://doi.org/10.1357/0022240041446173.

Smith, P.C., R.W. Houghton, R.G. Fairbanks, and D.G. Mountain. 2001. Interannual variability of boundary fluxes and water mass properties in the Gulf of Maine and on Georges Bank: 1993–1997. Deep Sea Research Part II 48:37–70, https://doi.org/10.1016/S0967-0645(00)00081-3.

Smith, T.M., and R.W. Reynolds. 2004. Improved extended reconstruction of SST (1854–1997). Journal of Climate 17:2,466–2,477, https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

Širović, A., J.A. Hildebrand, S.M. Wiggins, M.A. McDonald, S.E. Moore, and D. Thiele. 2004. Seasonality of blue and fin whale calls and the influence of sea ice in the western Antarctic Peninsula. Deep Sea Research Part II 51:2,327–2,344, https://doi.org/10.1016/j.dsr2.2004.08.005.

Stabeno, P.J., N.A. Bond, A.J. Hermann, N.B. Kachel, C.W. Mordy, and J.E. Overland. 2004. Meteorology and oceanography of the Northern Gulf of Alaska. Continental Shelf Research 24:859–897, https://doi.org/10.1016/j.csr.2004.02.007.

Stammerjohn, S.E., D.G. Martinson, R.C. Smith, and R.A. Iannuzzi. 2008. Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Research Part II 55:2,041–2,058, https://doi.org/10.1016/j.dsr2.2008.04.026.

Strom, S.L., M.B. Olson, E.L. Macri, and C.W. Mordy. 2006. Cross-shelf gradients in phytoplankton community structure, nutrient utilization, and growth rate in the northern coastal Gulf of Alaska. Marine Ecology Progress Series 328:75–92, https://doi.org/10.3354/meps328075.

Thiele, D., E.T. Chester, S.E. Moore, A. Širovic, J.A. Hildebrand, and A.S. Friedlaender. 2004. Seasonal variability in whale encounters in the western Antarctic Peninsula. Deep Sea Research Part II 51:2,311–2,325, https://doi.org/10.1016/j.dsr2.2004.07.007.

Thompson, D.W., and S. Solomon. 2002. Interpretation of recent Southern Hemisphere climate change. Science 296:895–899, https://doi.org/10.1126/science.1069270.

Ueno, H., W.R. Crawford, and H. Onishi. 2010. Impact of Alaskan stream eddies on chlorophyll distribution in the North Pacific. Journal of Oceanography 66:319–328, https://doi.org/10.1007/s10872-010-0028-6.

van den Broeke, M.R., and N.P. van Lipzig. 2004. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Annals of Glaciology 39:119–126, https://doi.org/10.3189/172756404781814654.

Weingartner, T.J., S.L. Danielson, and T.C. Royer. 2005. Freshwater variability and predictability in the Alaska Coastal Current. Deep Sea Research Part II 52:169–191, https://doi.org/10.1016/j.dsr2.2004.09.030.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.