Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 01

View Issue TOC
Volume 25, No. 1
Pages 158 - 167

OpenAccess

A Vent-Field-Scale Model of the East Pacific Rise 9°50'N Magma-Hydrothermal System

By Robert P. Lowell , Aida Farough , Leonid N. Germanovich, Laura B. Hebert , and Rebecca Horne 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

This paper describes a two-limb single-pass modeling approach constrained by vent temperature, heat flow, vent geochemistry, active-source seismology, and seismically inferred circulation geometry to provide first-order constraints on crustal permeability, conductive boundary layer thickness, fluid residence times, and magma replenishment rates for the magma-hydrothermal system at the East Pacific Rise (EPR) near 9°50’N. Geochemical data from black smokers and nearby diffuse-flow patches, as well as an estimate of heat flow partitioning, suggest that nearly 90% of the heat output stems from heat supplied by the subaxial magma chamber, even though almost 90% of that output appears as diffuse flow at the seafloor. Estimates of magma replenishment rates are consistent with the evolution of lava chemistry over the eruption cycle between 1991–1992 and 2005–2006. If the recharge surface area is 105 m2, a one-dimensional model of hydrothermal recharge using EPR 9°50’N parameters gives rise to rapid sealing as a result of anhydrite precipitation; however, if the area of recharge widens at depth to ~ 106 m2, sealing by anhydrite precipitation may not significantly affect hydrothermal circulation.

Citation

Lowell, R.P., A. Farough, L.N. Germanovich, L.B. Hebert, and R. Horne. 2012. A vent-field-scale model of the East Pacific Rise 9°50’N magma-hydrothermal system. Oceanography 25(1):158–167, https://doi.org/10.5670/oceanog.2012.13.

References
    Baker, E.T. 2007. Hydrothermal cooling of midocean ridge axes: Do measured and modeled heat fluxes agree? Earth and Planetary Science Letters 263:140–150, https://doi.org/10.1016/j.epsl.2007.09.010.
  1. Bemis, K., R.P. Lowell, and A. Farough. 2012. Diffuse flow on and around hydrothermal vents at mid-ocean ridges. Oceanography 25(1):182–191, https://doi.org/10.5670/oceanog.2012.16.
  2. Bredehoeft, J.D., and I.S. Papadopulos. 1965. Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resources Research 1:325–328, https://doi.org/10.1029/WR001i002p00325.
  3. Carbotte, S.M., M. Marjanovic, H.D. Carton, J.C. Mutter, J.P. Canales, M. Xu, M.R. Nedimović, and O. Aghaei. 2011. The ups and downs of magma in the crust beneath the East Pacific Rise axis 8°20’–10°10’N. Eos, Transactions, American Geophysical Union 92(52):Fall Meeting Abstract OS22A-01.
  4. Chadwick, B., S.L. Nooner, D.A. Butterfield, M.D. Lilley, D.A. Clague, D.W. Caress, R.P. Dziak, and J.H. Haxel. 2011. Discovery of the 2011 eruption at Axial Seamount. Eos, Transactions, American Geophysical Union 92(52):Fall Meeting Abstract V14C-04.
  5. Craft, K., and R.P. Lowell. 2009. A boundary layer model for submarine hydrothermal flows at on-axis and near axis locations. Geochemistry Geophysics Geosystems 10, Q12012, https://doi.org/10.1029/2009GC002707.
  6. Crowell, B.W., R.P. Lowell, and K.L. Von Damm. 2008. A model for the production of sulfur floc and “snowblower” events at mid-ocean ridges. Geochemistry Geophysics Geosystems 9, Q10T02, https://doi.org/10.1029/2008GC002103.
  7. Crone, T.J., M. Tolstoy, and D.F. Stroup. 2011. Permeability structure of young oceanic crust from poroelastically triggered earthquakes. Geophysical Research Letters 38, L05305, https://doi.org/10.1029/2011GL046820.
  8. Detrick, R.S., P. Buhl, E. Vera, J. Mutter, J. Orcutt, J. Madsen, and T. Brocher. 1987. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326: 35–41, https://doi.org/10.1038/326035a0.
  9. Farough, A. 2011. A parameterized approach to partitioning between focused and diffuse heat output and modeling hydrothermal recharge at the East Pacific Rise 9°50’N. MS Thesis, Virginia Tech, Blacksburg, VA.
  10. Ferrini, V.L., D.J. Fornari, T.M. Shank, J.C. Kinsey, M.A. Tivey, J.A. Soule, S.M. Carbotte, L.L. Whitcomb, D. Yoerger, and J. Howland. 2007. Sub-meter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest 9°50’N. Geochemistry Geophysics Geosystems 8, Q01006, https://doi.org/10.1029/2006GC001333.
  11. Fornari, D.J., K.L. Von Damm, J.G. Bryce, J.P. Cowen, V. Ferrini, A. Fundis, M.D. Lilley, G.W. Luther III, L.S. Mullineaux, M.R. Perfit, and others. 2012. The East Pacific Rise between 9°N and 10°N: Twenty-five years of integrated, multidisciplinary oceanic spreading center studies. Oceanography 25(1):18–43, https://doi.org/10.5670/oceanog.2012.02.
  12. Germanovich, L.N., R.P. Lowell, and P. Ramondenc. 2011. Magmatic origin of hydrothermal response to earthquake swarms: Constraints from heat flow and geochemical data at 9°50’N, East Pacific Rise. Journal of Geophysical Research 116, B05103, https://doi.org/10.1029/2009JB006588.
  13. Goss, A.R., M.R. Perfit, W.I. Ridley, K.H. Rubin, G.D. Kamenov, S.A. Soule, A. Fundis, and D.A. Fornari. 2010. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise (9°46’-56’N): Implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochemistry Geophysics Geosystems 11, Q05T09, https://doi.org/10.1029/2009GC002977.
  14. Han, L. 2011. Exploring two-phase hydrothermal circulation at a seafloor pressure of 25 MPa: Application for EPR 9°50’N. MS Thesis, Virginia Tech, Blacksburg, VA.
  15. Horne, R., L. Hebert, L. Liu, and R. Lowell. 2010. Fractional crystallization and replenishment of the magma chamber at the East Pacific Rise 9°50’N. Eos, Transactions, American Geophysical Union 91(52):Fall Meeting Abstract OS21C-1507.
  16. Kent, G.M., A.J. Harding, and J.A. Orcutt. 1990. Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30’N. Nature 344:650–653, https://doi.org/10.1038/344650a0.
  17. Liu, L., and R.P. Lowell. 2009. Models of hydrothermal heat output from a convecting, crystallizing, replenished magma chamber beneath an oceanic spreading center. Journal of Geophysical Research 114, B02102, https://doi.org/10.1029/2008JB005846.
  18. Lowell, R.P., and L.N. Germanovich. 2004. Seafloor hydrothermal processes: Results from scale analysis and single-pass models. Pp. 219–244 in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. C.R. German, J. Lin, and L.M. Parson, eds, Geophysical Monograph Series, vol. 148, American Geophysical Union, Washington, DC.
  19. Lowell, R.P., and Y. Yao. 2002. Anhydrite precipitation and the extent of hydrothermal recharge zones at ocean ridge crests. Journal of Geophysical Research 107, 2183, https://doi.org/10.1029/2001JB001289.
  20. Nooner, S.L., and W.W. Chadwick Jr. 2009. Volcanic inflation measured in the caldera of Axial Seamount: Implications for magma supply and future eruptions. Geochemistry Geophysics Geosystems 10, Q02002, https://doi.org/10.1029/2008GC002315.
  21. Ramondenc, P., L.N. Germanovich, K.L. Von Damm, and R.P. Lowell. 2006. The first measurements of hydrothermal heat output at 9°50’N, East Pacific Rise. Earth and Planetary Science Letters 245:487–497, https://doi.org/10.1016/j.epsl.2006.03.023.
  22. Sohn, R.A., D.J. Fornari, K.L. Von Damm, J.A. Hildebrand, and S.C. Webb. 1998. Seismic and hydrothermal evidence for a cracking event on the East Pacific Rise crest at 9°50’N. Nature 396:159–161, https://doi.org/10.1038/24146.
  23. Tolstoy, M., F. Waldhauser, D.R. Bohnenstiehl, R.T. Weekly, and W.Y. Kim. 2008. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature 451:181–187, https://doi.org/10.1038/nature06424.
  24. Von Damm, K.L. 2004. Evolution of the hydrothermal system at East Pacific Rise 9°50’N: Geochemical evidence for changes in the upper oceanic crust. Pp. 285–305 in Hydrothermal Interactions between the Lithosphere and Oceans. C.R. German, J. Lin, and L.M. Parson, eds, Geophysical Monograph Series, vol. 148, American Geophysical Union, Washington, DC.
  25. Von Damm, K.L., and M.D. Lilley. 2004. Diffuse flow hydrothermal fluids from 9°50’N East Pacific Rise: Origin, evolution, and biogeochemical controls. Pp. 245–268 in The Subseafloor Biosphere at Mid-Ocean Ridges. W.S. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds, Geophysical Monograph Series, vol. 144, American Geophysical Union, Washington, DC.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.