Oceanography The Official Magazine of
The Oceanography Society
Article Abstract

Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean’s horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.


MacKinnon, J.A., J.D. Nash, M.H. Alford, A.J. Lucas, J.B. Mickett, E.L. Shroyer, A.F. Waterhouse, A. Tandon, D. Sengupta, A. Mahadevan, M. Ravichandran, R. Pinkel, D.L. Rudnick, C.B. Whalen, M.S. Alberty, J. Sree Lekha, E.C. Fine, D. Chaudhuri, and G.L. Wagner. 2016. A tale of two spicy seas. Oceanography 29(2):50–61, https://doi.org/10.5670/oceanog.2016.38.


Batchelor, G.K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Journal of Fluid Mechanics 5:113–139, https://doi.org/10.1017/S002211205900009X.

Belcher, S.E., A.L.M. Grant, K.E. Hanley, B. Fox-Kemper, L. Van Roekel, P.P. Sullivan, W.G. Large, A. Brown, A. Hines, D. Calvert, and others. 2012. A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophysical Research Letters 39, L18605, https://doi.org/​10.1029/2012GL052932.

Boccaletti, G., R. Ferrari, and B. Fox-Kemper. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography 37:2,228–2,250, https://doi.org/10.1175/JPO3101.1.

Callies, J., and R. Ferrari. 2013. Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). Journal of Physical Oceanography 43 (11):2,456–2,474, https://doi.org/10.1175/JPO-D-13-063.1.

Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper. 2016. The role of mixed-layer instabilities in submesoscale turbulence. Journal of Fluid Mechanics 788:5–41, https://doi.org/10.1017/jfm.2015.700.

Charney, J.G. 1971. Geostrophic turbulence. Journal of the Atmospheric Sciences 28(6):1,087–1,095, https://doi.org/​10.1175/1520-0469(1971)028​<1087:GT>2.0.CO;2.

Chowdary, J.S., G. Srinivas, T.S. Fousiya, A. Parekh, C. Gnanaseelan, H. Seo, and J.A. MacKinnon. 2016. Representation of Bay of Bengal upper-ocean salinity in general circulation models. Oceanography 29(2):38–49, https://doi.org/10.5670/oceanog.2016.37.

Cole, S.T., D.L. Rudnick, and J.A. Colosi. 2010. Seasonal evolution of upper-ocean horizontal structure and the remnant mixed layer. Journal of Geophysical Research 115, C04012, https://doi.org/10.1029/2009JC005654.

Cottier, F., V. Tverberg, M. Inall, H. Svendsen, F. Nilsen, and C. Griffiths. 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research 110, C12005, https://doi.org/​10.1029/2004JC002757.

Ferrari, R., and D. Rudnick. 2000. Thermohaline variability in the upper ocean. Journal of Geophysical Research 105(C7):16,857–16,883, https://doi.org/10.1029/2000JC900057.

Fox-Kemper, B., G. Danabasoglu, R. Ferrari, S.M. Griffies, R.W. Hallberg, M.M. Holland, M.E. Maltrud, S. Peacock, and B.L. Samuels. 2011. Parameterization of mixed layer eddies: Part III. Implementation and impact in global ocean climate simulations. Ocean Modelling 39(1–2):61–78, https://doi.org/10.1016/j.ocemod.2010.09.002.

Jinadasa, S.U.P., I. Lozovatsky, J. Planella-Morató, J.D. Nash, J.A. MacKinnon, A.J. Lucas, H.W. Wijesekera, and H.J.S. Fernando. 2016. Ocean turbulence and mixing around Sri Lanka and in adjacent waters of the northern Bay of Bengal. Oceanography 29(2):170–179, https://doi.org/10.5670/oceanog.2016.49.

Johnston, T.M.S., D. Chaudhuri, M. Mathur, D.L. Rudnick, D. Sengupta, H.L. Simmons, A. Tandon, and R. Venkatesan. 2016. Decay mechanisms of near-inertial mixed layer oscillations in the Bay of Bengal. Oceanography 29(2):180–191, https://doi.org/10.5670/oceanog.2016.50.

Klymak, J.M., W. Crawford, M.H. Alford, J.A. MacKinnon, and R. Pinkel. 2015. Along-isopycnal variability of spice in the North Pacific. Journal of Geophysical Research 120:2,287–2,307, https://doi.org/10.1002/2013JC009421.

Kunze, E., J. Klymak, R.-C. Lien, R. Ferrari, C. Lee, M. Sundermeyer, and L. Goodman. 2015. Submesoscale water-mass spectra in the Sargasso Sea. Journal of Physical Oceanography 45(5):1,325–1,338, https://doi.org/10.1175/JPO-D-14-0108.1.

Large, W., J. McWilliams, and S. Doney. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer paramaterization. Reviews of Geophysics 32(4):363–403, https://doi.org/​10.1029/94RG01872.

Lucas, A.J., E.L. Shroyer, H.W. Wijesekera, H.J.S. Fernando, E. D’Asaro, M. Ravichandran, S.U.P. Jinadasa, J.A. MacKinnon, J.D. Nash, R. Sharma, and others. 2014. Mixing to monsoons: Air-sea interactions in the Bay of Bengal. Eos, Transactions American Geophysical Union 95(30):269–270, https://doi.org/​10.1002/2014EO300001.

Lucas, A.J., J.D. Nash, R. Pinkel, J.A. MacKinnon, A. Tandon, A. Mahadevan, M.M. Omand, M. Freilich, D. Sengupta, M. Ravichandran, and A. Le Boyer. 2016. Adrift upon a salinity-​stratified sea: A view of upper-ocean processes in the Bay of Bengal during the southwest monsoon. Oceanography 29(2):134–145, https://doi.org/10.5670/oceanog.2016.46.

Mahadevan, A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annual Review of Marine Science 8:161–184, https://doi.org/10.1146/annurev-marine-010814-015912.

Mahadevan, A., G. Spiro Jaeger, M. Freilich, M. Omand, E.L. Shroyer, and D. Sengupta. 2016. Freshwater in the Bay of Bengal: Its fate and role in air-sea heat exchange. Oceanography 29(2):72–81, https://doi.org/10.5670/oceanog.2016.40.

Marcinko, C.L., A.P. Martin, and J.T. Allen. 2015. Characterizing horizontal variability and energy spectra in the Arctic Ocean halocline. Journal of Geophysical Research 120(1):436–450, https://doi.org/10.1002/2014JC010381.

Prasad, T. 1997. Annual and seasonal mean buoyancy fluxes for the tropical Indian Ocean. Current Science 73:667–674.

Rocha, C.B., T.K. Chereskin, S.T. Gille, and D. Menemenlis. 2016. Mesoscale to submesoscale wavenumber spectra in Drake Passage. Journal of Physical Oceanography 46:601–620, https://doi.org/10.1175/JPO-D-15-0087.1.

Rudnick, D.L., and J.P. Martin. 2002. On the horizontal density ratio in the upper ocean. Dynamics of Atmospheres and Oceans 36(1):3–21, https://doi.org/10.1016/S0377-0265(02)00022-2.

Samelson, R. and C. Paulson. 1988. Towed thermistor chain observations of fronts in the subtropical North Pacific. Journal of Geophysical Research 93(C3):2,237–2,246, https://doi.org/​10.1029/JC093iC03p02237.

Sarkar, S., H.T. Pham, S. Ramachandran, J.D. Nash, A. Tandon, J. Buckley, A.A. Lotliker, and M.M. Omand. 2016. The interplay between submesoscale instabilities and turbulence in the surface layer of the Bay of Bengal. Oceanography 29(2):146–157, https://doi.org/10.5670/oceanog.2016.47.

Schott, F.A., and J.P. McCreary Jr. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography 51(1):1–123, https://doi.org/10.1016/S0079-6611(01)00083-0.

Sengupta, D., G. Bharath Raj, M. Ravichandran, J. Sree Lekha, and F. Papa. 2016. Near-surface salinity and stratification in the North Bay of Bengal from moored observations. Geophysical Research Letters 43, https://doi.org/​10.1002/2016GL068339.

Shcherbina, A.Y., M.A. Sundermeyer, E. Kunze, E. D’Asaro, G. Badin, D. Birch, A.-M.E.G. Brunner-Suzuki, J. Callies, B.T. Guebel Cervantes, M. Claret, and others. 2015. The LatMix summer campaign: Submesoscale stirring in the upper ocean. Bulletin of the American Meteorological Society 96(8):1,257–1,279, https://doi.org/10.1175/BAMS-D-14-00015.1.

Shroyer, E.L., D.L. Rudnick, J.T. Farrar, B. Lim, S.K. Venayagamoorthy, L.C. St. Laurent, A. Garanaik, and J.N. Moum. 2016. Modification of upper-ocean temperature structure by subsurface mixing in the presence of strong salinity stratification. Oceanography 29(2):62–71, https://doi.org/10.5670/oceanog.2016.39.

Smith, K.M., P.E. Hamlington, and B. Fox-Kemper. 2015. Effects of submesoscale turbulence on ocean tracers. Journal of Geophysical Research 121:908–933, https://doi.org/​10.1002/2015JC011089.

Smith, K.S., and R. Ferrari. 2009. The production and dissipation of compensated thermohaline variance by mesoscale stirring. Journal of Physical Oceanography 39(10):2,477–2,501, https://doi.org/10.1175/2009JPO4103.1.

Subramanian, V. 1993. Sediment load of Indian rivers. Current Science 64:928–930.

Svendsen, H., A. Beszczynska-Møller, J.O. Hagan, B. Lefauconnier, V. Tverberg, S. Gerland, J.B. Ørbok, K. Bischof, C. Papucci, M. Zajaczkowski, and others. 2002. The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research 21(1):133–166, https://doi.org/​10.1111/j.1751-8369.2002.tb00072.x

Thangaprakash, V.P., M.S. Girishkumar, K. Suprit, N. Suresh Kumar, D. Chaudhuri, K. Dinesh, A. Kumar, S. Shivaprasad, M. Ravichandran, J.T. Farrar, and others. 2016. What controls seasonal evolution of sea surface temperature in the Bay of Bengal? Mixed layer heat budget analysis using moored buoy observations along 90°E. Oceanography 29(2):202–213, https://doi.org/10.5670/oceanog.2016.52.

Thomas, L.N., A. Tandon, and A. Mahadevan. 2008. Submesoscale processes and dynamics. Pp. 17–38 in Ocean Modeling in an Eddying Regime. M.W. Hecht and H. Hasumi, eds, Geophysical Monograph Series, American Geophysical Union, Washington, DC, https://doi.org/10.1029/177GM04.

Timmermans, M.-L. 2015. The impact of stored solar heat on Arctic sea ice growth. Geophysical Research Letters 42(15):6,399–6,406, https://doi.org/10.1002/2015GL064541.

Timmermans, M.-L., S. Cole, and J. Toole. 2012. Horizontal density structure and restratification of the Arctic Ocean surface layer. Journal of Physical Oceanography 42(4):659–668, https://doi.org/​10.1175/JPO-D-11-0125.1.

Timmermans, M.-L., and S.R. Jayne. 2016. The Arctic Ocean spices up. Journal of Physical Oceanography 46(4):1,277–1,284, https://doi.org/10.1175/JPO-D-16-0027.1.

Timmermans, M.-L., and P. Winsor. 2013. Scales of horizontal density structure in the Chukchi Sea surface layer. Continental Shelf Research 52:39–45, https://doi.org/10.1016/j.csr.2012.10.015.

Varkey, M., V. Murty, and A. Suryanarayana. 1996. Physical oceanography of the Bay of Bengal and Andaman Sea. Oceanography and Marine Biology: An Annual Review 34:1–70.

Wang, D.-P., C.N. Flagg, K. Donohue, and H.T. Rossby. 2010. Wavenumber spectrum in the Gulf Stream from shipboard ADCP observations and comparison with altimetry measurements. Journal of Physical Oceanography 40(4):840–844, https://doi.org/10.1175/2009JPO4330.1.

Warner, S.J., J. Becherer, K. Pujiana, E.L. Shroyer, M. Ravichandran, V.P. Thangaprakash, and J.N. Moum. 2016. Monsoon mixing cycles in the Bay of Bengal: A year-long subsurface mixing record. Oceanography 29(2):158–169, https://doi.org/10.5670/oceanog.2016.48.

Wijesekera, H.W., E. Shroyer, A. Tandon, M. Ravichandran, D. Sengupta, P. Jinadas, H.J.S. Fernando, N. Agrawal, K. Arulanathan, G.S. Bhat, and others. In press. ASIRI: An Ocean-Atmosphere Initiative for Bay of Bengal. Bulletin of the American Meteorological Society, https://doi.org/​10.1175/​BAMS-D-14-00197.1.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.