Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 04

View Issue TOC
Volume 25, No. 4
Pages 64 - 71


A New Database to Explore the Findings from Large-Scale Ocean Iron Enrichment Experiments

By Philip W. Boyd , Dorothee C.E. Bakker, and Cynthia Chandler  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Some of the largest scientific manipulation experiments conducted on our planet have enriched broad swaths of the surface ocean with iron. Surface ocean signatures of these iron enrichment experiments have covered areas up to > 1,000 km2 and have been conspicuous from space. Twelve of these multidisciplinary studies have been conducted since the early 1990s in three specific ocean regions—the Southern Ocean, and equatorial and sub-Arctic areas of the Pacific Ocean—where plant nutrients are perennially high (termed high nutrient low chlorophyll, or HNLC). In addition, a combined phosphorus and iron enrichment experiment was conducted in the oligotrophic North Atlantic Ocean. Together, these studies represent a unique set of physical, chemical, optical, biological, and ecological data. The richness of these data sets is captured in an open-access relational database at the Biological and Chemical Oceanography Data Management Office (BCO_DMO; http://osprey.bco-dmo.org/program.cfm?flag=viewp&id=10&sortby=program). It is a product of Working Group 131 (The Legacy of in situ Iron Enrichment: Data Compilation and Modeling; http://www.scor-int.org/Working_Groups/wg131.htm) of the Scientific Committee on Oceanic Research. The purpose of this article is to make the wider community aware of this resource. It also presents the merits and provides examples of the utility of this database for exploring emerging topics in oceanography, such as the links between ecosystem processes and biogeochemical cycles; the feasibility and many side effects of oceanic geoengineering; and how understanding the coupling among physical, chemical, and biological processes at the mesoscale can inform the emerging field of submesoscale biogeochemistry.


Boyd, P.W., D.C.E. Bakker, and C. Chandler. 2012. A new database to explore the findings from large-scale ocean iron enrichment experiments. Oceanography 25(4):64–71, https://doi.org/10.5670/oceanog.2012.104.


Banse, K. 1991. Rates of phytoplankton cell division in the field and in iron enrichment experiments. Limnology and Oceanography 36(8):1,886–1,898.

Behrenfeld, M.J., A.J. Bale, Z.S. Kolber, J. Aiken, and P.G. Falkowski. 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–513, https://doi.org/10.1038/383508a0.

Boyd, P.W., A.J. Watson, C.S. Law, E.R. Abraham, T. Trull, R. Murdoch, D.C.E. Bakker, A.R. Bowie, K.O. Buesseler, H. Chang, and others. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702, https://doi.org/10.1038/35037500.

Boyd, P.W. 2002. The role of iron in the biogeochemistry of the Southern Ocean and equatorial Pacific: A comparison of in situ iron enrichments. Deep-Sea Research Part II 49:1,803–1,821, https://doi.org/10.1016/S0967-0645(02)00013-9.

Boyd, P.W., G.A. Jackson, and A.M. Waite. 2002. Are mesoscale perturbation experiments in polar waters prone to physical artefacts? Evidence from algal aggregation modelling studies. Geophysical Research Letters 29(11), 1541, https://doi.org/10.1029/2001GL014210.

Boyd, P.W., T. Jickells, C.S. Law, S. Blain, E.A. Boyle, K.O. Buesseler, K.H. Coale, J.J. Cullen, H.J.W. de Baar, M. Follows, and others. 2007. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science 315:612–617, https://doi.org/10.1126/science.1131669.

Boyd, P.W., C.S. Law, C.S. Wong, Y. Nojiri, A. Tsuda, M. Levasseur, S. Takeda, R. Rivkin, P.J. Harrison, R. Strzepek, and others. 2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428(6982):549–553, https://doi.org/10.1038/nature02437.

Boyd, P.W., E. Ibisanmi, S.G. Sander, K.A. Hunter, and G.A. Jackson. 2010. Remineralization of upper ocean particles: Implications for iron biogeochemistry. Limnology and Oceanography 55(3):1,271–1,288, https://doi.org/10.4319/lo.2010.55.3.1271.

Boyd, P.W. 2008. Ranking geo-engineering schemes. Nature Geoscience 1:722–724, https://doi.org/10.1038/ngeo348.

Chai, F., M.S. Jiang, Y. Chao, R.C. Dugdale, F. Chavez, and R.T. Barber. 2007. Modeling responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific Ocean. Global Biogeochemical Cycles 21, GB3S90, https://doi.org/10.1029/2006GB002804.

Chisholm, S.W., and F.M.M. Morel, eds. 1991. What controls phytoplankton production in nutrient-rich areas of the open sea? Limnology and Oceanography 36(8):1,507–1,970.

Coale, K.H., K.S. Johnson, S.E. Fitzwater, R.M. Gordon, S. Tanner, F.P. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, and others. 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–511, https://doi.org/10.1038/383495a0.

Coale, K.H., K.S. Johnson, F.P. Chavez, K.O. Buesseler, R.T. Barber, M.A. Brzezinski, W.P. Cochlan, F.J. Millero, P.G. Falkowski, J.E. Bauer, and others. 2004. Southern Ocean iron enrichment experiment: Carbon cycling in high- and low-Si waters. Science 304:408–414, https://doi.org/10.1126/science.1089778.

De Baar, H.J.W. 1994. Von Liebig’s Law of the Minimum and plankton ecology (1899–1991). Progress in Oceanography 33:347–386, https://doi.org/10.1016/0079-6611(94)90022-1.

Denman, K.L., C. Völker, M.A. Peña, and R.B. Rivkin. 2006. Modelling the ecosystem response to iron fertilization in the subarctic NE Pacific: The influence of grazing, and Si and N cycling on CO2 drawdown. Deep-Sea Research Part II 53:2,327–2,352, https://doi.org/10.1016/j.dsr2.2006.05.026.

Dixon, J.L. 2008. Macro and micro nutrient limitation of microbial productivity in oligotrophic subtropical Atlantic waters. Environmental Chemistry 5:135–142, https://doi.org/10.1071/EN07081.

Frost, B.W. 1996. Phytoplankton bloom on iron rations. Nature 383:474–476, https://doi.org/10.1038/383475a0.

Gervais, F., U. Riebesell, and M.Y. Gorbunov. 2002. Changes in primary productivity and chlorophyll a in response to iron fertilization in the southern Polar Frontal Zone. Limnology and Oceanography 47:1,324–1,335.

Gnanadesikan, A., J.L. Sarmiento, and R.D. Slater. 2003. Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Global Biogeochemical Cycles 17(2), 1050, https://doi.org/10.1029/2002GB001940.

Guidi, L., P.H.R. Calil, S. Duhamel, K.M. Björkman, S.C. Doney, G.A. Jackson, B. Li, M.J. Church, S. Tozzi, Z.S. Kolber, and others. 2009. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre? Journal of Geophysical Research 117, G02024, https://doi.org/10.1029/2012JG001984.

Hart, T.J. 1934. On the phytoplankton of the Southwest Atlantic and the Bellingshausen Sea 1929–1931. Discovery Reports 8:1–268.

Harvey, M.J., C.S. Law, M.J. Smith, J.A. Hall, E.R. Abraham, C.L. Stevens, M.G. Hadfield, D.T. Ho, B. Ward, S.D.Archer, and others. 2010. The SOLAS air–sea gas exchange experiment (SAGE) 2004. Deep-Sea Research Part II 58:753–763, https://doi.org/10.1016/j.dsr2.2010.10.015.

Hutchins, D.A., and K.W. Bruland. 1998. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393:561–564, https://doi.org/10.1038/31203.

Le Clainche, Y., M. Levasseur, A. Vezina, R.-C. Bouillon, A. Merzouk, S. Michaud, M. Scarratt, C.S. Wong, R.B. Rivkin, P.W. Boyd, and others. 2006. Modeling analysis of the effect of iron enrichment on dimethyl sulfide dynamics in the NE Pacific (SERIES experiment). Journal of Geophysical Research 111, C01011, https://doi.org/10.1029/2005JC002947.

Ledwell, J.R., A.J. Watson, and C.S. Law. 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364:701–703, https://doi.org/10.1038/364701a0.

Legendre, L., and R.B. Rivkin. 2005. Integrating functional diversity, food web processes, and biogeochemical carbon fluxes into a conceptual approach for modelling the upper ocean in a high-CO2 world. Journal of Geophysical Research 111, C09S17, https://doi.org/10.1029/2004JC002530.

Lévy, M., R. Ferrari, P.J.S. Franks, A.P. Martin, and P. Rivière. 2012. Bringing physics to life at the submesoscale. Geophysical Research Letters 39, L14602, https://doi.org/10.1029/2012GL052756.

Lovelock, J.E., and C.G. Rapley. 2007. Ocean pipes could help the Earth to cure itself. Nature 449:403, https://doi.org/10.1038/449403a.

Markels, M. Jr., and R.T. Barber. 2001. Sequestration of carbon dioxide by ocean fertilization. Paper presented at the 1st National Conference on Carbon Sequestration, National Energy and Technology Laboratory, Washington, DC, May 14–17, 2001.

Martin, J.H., and S.E. Fitzwater. 1988. Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic. Nature 331:341–343, https://doi.org/10.1038/331341a0.

Martin, J.M. 1990. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography 5:1–13, https://doi.org/10.1029/PA005i001p00001.

Martin, J.M., K.H. Coale, K.S. Johnson, S.E. Fitzwater, R.M. Gordon, S.J. Tanner, C.N. Hunter, V.A. Elrod, J.L. Nowicki, T.L. Coley, and others. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129, https://doi.org/10.1038/371123a0.

Nature Geoscience editorial. 2009. The Law of the Sea. Nature Geoscience 2:153, https://doi.org/10.1038/ngeo464.

Resplandy, L., A.P. Martin, F. LeMoigne, P. Martin, A. Aquilina, L. Mémery, M. Lévy, and R. Sanders. 2012. How does dynamical spatial variability impact 234Th-derived estimates of organic export? Deep-Sea Research Part I 68:24–45, https://doi.org/10.1016/j.dsr.2012.05.015.

Russell, L.M., P.J. Rasch, G.M. Mace, R.B. Jackson, J. Shepherd, P. Liss, M. Leinen, D. Schimel, N.E. Vaughan, A.C. Janetos, and others. 2012. Ecosystem impacts of geoengineering: A review for developing a science plan. Ambio 41(4):350–369, https://doi.org/10.1007/s13280-012-0258-5.

Sarmiento, J.L., R.D. Slater, J. Dunne, A. Gnanadesikan, and M.R. Hiscock. 2010. Efficiency of small scale carbon mitigation by patch iron fertilization. Biogeosciences 7:3,593–3,624, https://doi.org/10.5194/bg-7-3593-2010.

Schiermeier, Q. 2009. Ocean fertilization experiment suspended. Nature, https://doi.org/10.1038/news.2009.26.

Shepherd, J., K. Caldeira, P. Cox, J. Haigh, D. Keith, B. Launder, G. Mace, G. MacKerron, J. Pyle, S. Rayner, and others. 2009. Geoengineering the climate: Science, governance and uncertainty. Royal Society Policy Document 10/09, 81 pp.

Sigman, D.M., and E.A. Boyle. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869, https://doi.org/10.1038/35038000.

Silver, M.W., S. Bargu, S.L. Coale, C.R. Benitez-Nelson, A.C. Garcia, K.J. Roberts, E. Sekula-Wood, K.W. Bruland, and K.H. Coale. 2010. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific. Proceedings of the National Academy of Sciences of the United States of America 107(48):20,762–20,767, https://doi.org/10.1073/pnas.1006968107.

Smetacek, V., C. Klaas, V. Strass, P. Assmy, M. Montresor, B. Cisewski, N. Savoye, A. Webb, F. d’Ovidio, J.M. Arrieta, and others. 2012. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 478(7407):313–319, https://doi.org/10.1038/nature11229.

Strong, A.L., S.W. Chisholm, C. Miller, and J. Cullen. 2009a. Ocean fertilization: Time to move on. Nature 361:347–348, https://doi.org/10.1038/461347a.

Strong, A.L., J.J. Cullen, and S.W. Chisholm. 2009. Ocean fertilization: Science, policy, and commerce. Oceanography 22(3):236–261, https://doi.org/10.5670/oceanog.2009.83.

Tsuda, A., S. Takeda, H. Saito, J. Nishioka, I. Kudo, Y. Nojiri, K. Suzuki, M. Uematsu, M.L. Wells, D. Tsumune, and others. 2007. Evidence for the grazing hypothesis: Grazing reduces phytoplankton responses of the HNLC ecosystem to iron enrichment in the western subarctic Pacific (SEEDS II). Journal of Oceanography 63:983–994, https://doi.org/10.1007/s10872-007-0082-x.

Tsuda, A., S. Takeda, H. Saito, J. Nishioka, Y. Nojiri, I. Kudo, H. Kiyosawa, A. Shiomoto, K. Imai, T. Ono, and others. 2003. A mesoscale iron enrichment in the western Subarctic Pacific induces a large centric diatom bloom. Science 300:958–961, https://doi.org/10.1126/science.1082000.

Turner, S.M., M.J. Harvey, C.S. Law, P.D. Nightingale, and P.S. Liss. 2004. Iron-induced changes in oceanic sulfur biogeochemistry. Geophysical Research Letters 31, L14307, https://doi.org/10.1029/2004GL020296.

Watson, A.J., P.S. Liss, and R.A. Duce, 1991. Design of a small-scale in situ iron fertilization experiment. Limnology and Oceanography 36:1,960–1,965.

Watson, A.J., D.C.E. Bakker, P.W. Boyd, A.J. Ridgwell, and C.S. Law. 2000. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407:730–733, https://doi.org/10.1038/35037561.

Watson, A.J., P.W. Boyd, S. Turner, T. Jickells, and P. Liss. 2008. Designing the next generation of ocean iron fertilization experiments. Marine Ecology Progress Series 364:303–309, https://doi.org/10.3354/meps07552.

White, A., K. Björkman, E. Grabowski, R. Letelier, S. Poulos, B. Watkins, and D. Karl. 2010. An open ocean trial of controlled upwelling using wave pump technology. Journal of Atmospheric and Oceanic Technology 27:385–396, https://doi.org/10.1175/2009JTECHO679.1.

Williamson, P., D.W.R. Wallace, C.S. Law, P.W. Boyd, Y. Collos, P. Croot, K. Denman, U. Riebesell, S. Takeda, and C. Vivian. In press. Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance. Process Safety and Environmental Protection, https://doi.org/10.1016/j.psep.2012.10.007.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.