Oceanography The Official Magazine of
The Oceanography Society
Volume 21 Issue 01

View Issue TOC
Volume 21, No. 1
Pages 68 - 81

OpenAccess

The Aquarius/SAC-D Mission: Designed to Meet the Salinity Remote-Sensing Challenge

Gary Lagerloef F. Raul ColombDavid Le VineFrank WentzSimon YuehChristopher Ruf Jonathan LillyJohn Gunn Yi ChaoAnnette deCharonGene Feldman Calvin Swift
First Paragraph

In an Oceanography article published 13 years ago, three of us identified salinity measurement from satellites as the next ocean remote-sensing challenge. We argued that this represented the next “zeroth order” contribution to oceanography (Lagerloef et al., 1995) because salinity variations form part of the interaction between ocean circulation and the global water cycle, which in turn affects the ocean’s capacity to store and transport heat and regulate Earth’s climate. Now, we are pleased to report that a new satellite program scheduled for launch in the near future will provide data to reveal how the ocean responds to the combined effects of evaporation, precipitation, ice melt, and river runoff on seasonal and interannual time scales. These measurements can be used, for example, to close the marine hydrologic budget, constrain coupled climate models, monitor mode water formation, investigate the upper-ocean response to precipitation variability in the tropical convergence zones, and provide early detection of low-salinity intrusions in the subpolar Atlantic and Southern oceans. Sea-surface salinity (SSS) and sea-surface temperature (SST) determine sea-surface density, which controls the formation of water masses and regulates three-dimensional ocean circulation.

Citation

Lagerloef, G., F.R. Colomb, D. Le Vine, F. Wentz, S. Yueh, C. Ruf, J. Lilly, J. Gunn, Y. Chao, A. deCharon, G. Feldman, and C. Swift. 2008. The Aquarius/SAC-D Mission: Designed to meet the salinity remote-sensing challenge. Oceanography 21(1):68–81, https://doi.org/10.5670/oceanog.2008.68.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.