Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The goal of the Pacific Ocean Boundary Ecosystem and Climate Study (POBEX) was to diagnose the large-scale climate controls on regional transport dynamics and lower trophic marine ecosystem variability in Pacific Ocean boundary systems. An international team of collaborators shared observational and eddy-resolving modeling data sets collected in the Northeast Pacific, including the Gulf of Alaska (GOA) and the California Current System (CCS), the Humboldt or Peru-Chile Current System (PCCS), and the Kuroshio-Oyashio Extension (KOE) region. POBEX investigators found that a dominant fraction of decadal variability in basin- and regional-scale salinity, nutrients, chlorophyll, and zooplankton taxa is explained by a newly discovered pattern of ocean-climate variability dubbed the North Pacific Gyre Oscillation (NPGO) and the Pacific Decadal Oscillation (PDO). NPGO dynamics are driven by atmospheric variability in the North Pacific and capture the decadal expression of Central Pacific El Niños in the extratropics, much as the PDO captures the low-frequency expression of eastern Pacific El Niños. By combining hindcasts of eddy-resolving ocean models over the period 1950–2008 with model passive tracers and long-term observations (e.g., CalCOFI, Line-P, Newport Hydrographic Line, Odate Collection), POBEX showed that the PDO and the NPGO combine to control low-frequency upwelling and alongshore transport dynamics in the North Pacific sector, while the eastern Pacific El Niño dominates in the South Pacific. Although different climate modes have different regional expressions, changes in vertical transport (e.g., upwelling) were found to explain the dominant nutrient and phytoplankton variability in the CCS, GOA, and PCCS, while changes in alongshore transport forced much of the observed long-term change in zooplankton species composition in the KOE as well as in the northern and southern CCS. In contrast, cross-shelf transport dynamics were linked to mesoscale eddy activity, driven by regional-scale dynamics that are largely decoupled from variations associated with the large-scale climate modes. Preliminary findings suggest that mesoscale eddies play a key role in offshore transport of zooplankton and impact the life cycles of higher trophic levels (e.g., fish) in the CCS, PCCS, and GOA. Looking forward, POBEX results may guide the development of new modeling and observational strategies to establish mechanistic links among climate forcing, mesoscale circulation, and marine population dynamics.

Citation

Di Lorenzo, E., V. Combes, J.E. Keister, P.T. Strub, A.C. Thomas, P.J.S. Franks, M.D. Ohman, J.C. Furtado, A. Bracco, S.J. Bograd, W.T. Peterson, F.B. Schwing, S. Chiba, B. Taguchi, S. Hormazabal, and C. Parada. 2013. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography 26(4):68–81, https://doi.org/10.5670/oceanog.2013.76.

References
    Alexander, M.A. 1992. Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. Journal of Climate 5:944–958, https://doi.org/10.1175/1520-0442(1992)005<0944:MAIDEN>2.0.CO;2.
  1. Alexander, M.A., I. Blade, M. Newman, J.R. Lanzante, N-C. Lau, and J.D. Scott. 2002. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. Journal of Climate 15:2,205–2,231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
  2. Alexander, M.A., D.J. Vimont, P. Chang, and J.D. Scott. 2010. The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. Journal of Climate 23:2,885–2,901, https://doi.org/10.1175/2010JCLI3205.1.
  3. Anderson, B. 2003. Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. Journal of Geophysical Research 108, 4732, https://doi.org/10.1029/2003JD003805.
  4. Ashok, K., S.K. Behera, S.A. Rao, H.Y. Weng, and T. Yamagata. 2007. El Niño Modoki and its possible teleconnection. Journal of Geophysical Research 112, C11007, https://doi.org/10.1029/2006JC003798.
  5. Ashok, K., and T. Yamagata. 2009. Climate change: The El Niño with a difference. Nature 461:481–484, https://doi.org/10.1038/461481a.
  6. Barth, J.A., B.A. Menge, J. Lubchenco, F. Chan, J.M. Bane, A.R. Kirincich, M.A. McManus, K.J. Nielsen, S.D. Pierce, and L. Washburn. 2007. Delayed upwelling alters nearshore coastal ecosystems in the northern California Current. Proceedings of the National Academy of Sciences of the United States of America 104:3,719–3,724, https://doi.org/10.1073/pnas.0700462104.
  7. Bograd, S.J., I. Schroeder, N. Sarkar, X. Qiu, W.J. Sydeman, and F.B. Schwing. 2009. The phenology of coastal upwelling in the California Current. Geophysical Research Letters 36, L01602, https://doi.org/10.1029/2008GL035933.
  8. Bond, N.A., J.E. Overland, M. Spillane, and P. Stabeno. 2003. Recent shifts in the state of the North Pacific. Geophysical Research Letters 30, 2183, https://doi.org/10.1029/2003GL018597.
  9. Ceballos, L.I., E. Di Lorenzo, C.D. Hoyos, N. Schneider, and B. Taguchi. 2009. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. Journal of Climate 22:5,163–5,174, https://doi.org/10.1175/2009JCLI2848.1.
  10. Chelton, D.B., P.A. Bernal, and J.A. McGowan. 1982. Large-scale interannual physical and biological interaction in the California Current. Journal of Marine Research 40:1,095–1,125.
  11. Chenillat, F., P. Riviere, X. Capet, E. Di Lorenzo, and B. Blanke. 2012. North Pacific Gyre Oscillation modulates seasonal timing and ecosystem functioning in the California Current upwelling system. Geophysical Research Letters 39, L01606, https://doi.org/10.1029/2011GL049966.
  12. Chhak, K., and E. Di Lorenzo. 2007. Decadal variations in the California Current upwelling cells. Geophysical Research Letters 34, L14604, https://doi.org/10.1029/2007GL030203.
  13. Chhak, K.C., E. Di Lorenzo, N. Schneider, and P.F. Cummins. 2009. Forcing of low-frequency ocean variability in the Northeast Pacific. Journal of Climate 22:1,255–1,276, https://doi.org/10.1175/2008JCLI2639.1.
  14. Chiba, S., E. Di Lorenzo, A. Davis, J.E. Keister, B. Taguchi, Y. Sasai, and H. Sugisaki. 2013. Large-scale climate control of zooplankton transport and biogeography in the Kuroshio-Oyashio Extension region. Geophysical Research Letters 40:5,182–5,187, https://doi.org/10.1002/grl.50999.
  15. Cloern, J.E., K.A. Hieb, T. Jacobson, B. Sanso, E. Di Lorenzo, M.T. Stacey, J.L. Largier, W. Meiring, W.T. Peterson, T.M. Powell, M. Winder, and A.D. Jassby. 2010. Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific. Geophysical Research Letters 37, L21602, https://doi.org/10.1029/2010GL044774.
  16. Combes, V., F. Chenillat, E. Di Lorenzo, P. Riviere, M.D. Ohman, and S.J. Bograd. 2013. Cross-shore transport variability in the California Current: Ekman upwelling vs. eddy dynamics. Progress in Oceanography 109:78–89, https://doi.org/10.1016/j.pocean.2012.10.001.
  17. Combes, V., and E. Di Lorenzo. 2007. Intrinsic and forced interannual variability of the Gulf of Alaska mesoscale circulation. Progress in Oceanography 75:266–286, https://doi.org/10.1016/j.pocean.2007.08.011.
  18. Combes, V., E. Di Lorenzo, and E. Curchitser. 2009. Interannual and decadal variations in cross-shelf transport in the Gulf of Alaska. Journal of Physical Oceanography 39:1,050–1,059, https://doi.org/10.1175/2008JPO4014.1.
  19. Correa-Ramirez, M.A., S. Hormazábal, and G. Yuras. 2007. Mesoscale eddies and high chlorophyll concentrations off central Chile (29°–39°S). Geophysical Research Letters 34, L12604, https://doi.org/10.1029/2007GL029541.
  20. Cummins, P.F., and H.J. Freeland. 2007. Variability of the North Pacific current and its bifurcation. Progress in Oceanography 75:253–265, https://doi.org/10.1016/j.pocean.2007.08.006.
  21. Davis, A., and E. Di Lorenzo. In press. The forcing dynamics of mesoscale eddies in the California Current System. Deep Sea Research Part A.
  22. Deser, C., M.A. Alexander, S.P. Xie, and A.Z. Phillips. 2010. Sea surface temperature variability: Patterns and mechanisms. Annual Review of Marine Science 2:115–143, https://doi.org/10.1146/annurev-marine-120408-151453.
  23. Di Lorenzo, E., K.M. Cobb, J.C. Furtado, N. Schneider, B.T. Anderson, A. Bracco, M.A. Alexander, and D.J. Vimont. 2010. Central Pacific El Niño and decadal climate change in the North Pacific. Nature Geoscience 3:762–765, https://doi.org/10.1038/ngeo984.
  24. Di Lorenzo, E., J. Fiechter, N. Schneider, A.J. Miller, P.J.S. Franks, S.J. Bograd, A.M. Moore, A. Thomas, W. Crawford, A. Pena, and A.J. Herman. 2009. Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophysical Research Letters, 36, L14601, https://doi.org/10.1029/2009GL038261.
  25. Di Lorenzo, E., D. Mountain, H.P. Batchelder, N. Bond, and E.E. Hofmann. 2013. Advances in marine ecosystem dynamics from US GLOBEC: The horizontal-advection bottom-up forcing paradigm. Oceanography 26(4):22–33, https://doi.org/10.5670/oceanog.2013.73.
  26. Di Lorenzo, E., and M.D. Ohman. 2013. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proceedings of the National Academy of Sciences of the United States of America 110:2,496–2,499, https://doi.org/10.1073/pnas.1218022110.
  27. Di Lorenzo, E., N. Schneider, K.M. Cobb, K. Chhak, P.J.S. Franks, A.J. Miller, J.C. McWilliams, S.J. Bograd, H. Arango, E. Curchister, and others. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters 35, L08607, https://doi.org/10.1029/2007GL032838.
  28. Furtado, J.C., E. Di Lorenzo, B.T. Anderson, and N. Schneider. 2012. Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Climate Dynamics 39:2,833–2,846, https://doi.org/10.1007/s00382-011-1245-4.
  29. Furtado, J.C., E. Di Lorenzo, N. Schneider, and N.A. Bond. 2011. North Pacific decadal variability and climate change in the IPCC AR4 models. Journal of Climate 24:3,049–3,067, https://doi.org/10.1175/2010JCLI3584.1.
  30. Guan, B., and S. Nigam. 2008. Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. Journal of Climate 21:2,790–2,809, https://doi.org/10.1175/2007JCLI2076.1.
  31. Hare, S.R., and N.J. Mantua. 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography 47:103–145, https://doi.org/10.1016/S0079-6611(00)00033-1.
  32. Hasselmann, K. 1976. Stochastic climate models: Part 1. Theory. Tellus 28:473–485, https://doi.org/10.1111/j.2153-3490.1976.tb00696.x.
  33. Holbrook, N.J., I.D. Goodwin, S. McGregor, E. Molina, and S.B. Power. 2011. ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep Sea Research Part II 58:547–558, https://doi.org/10.1016/j.dsr2.2010.06.007.
  34. Hormazabal, S., V. Combes, C.E. Morales, M.A. Correa-Ramirez, E. Di Lorenzo, and S. Nuñez. 2013. Intrathermocline eddies in the Coastal Transition Zone off central Chile (31­–41°S). Journal of Geophysical Research 118:4,811–4,821, https://doi.org/10.1002/jgrc.20337.
  35. Kahru, M., and B.G. Mitchell. 2000. Influence of the 1997–98 El Niño on the surface chlorophyll in the California Current. Geophysical Research Letters 27:2,937–2,940, https://doi.org/10.1029/2000GL011486.
  36. Kao, H.-Y., and J.-Y. Yu. 2009. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate 22:615–632, https://doi.org/10.1175/2008JCLI2309.1.
  37. Keister, J.E., E. Di Lorenzo, C.A. Morgan, V. Combes, and W.T. Peterson. 2011. Zooplankton species composition is linked to ocean transport in the Northern California Current. Global Change Biology 17:2,498–2,511, https://doi.org/10.1111/j.1365-2486.2010.02383.x.
  38. Keister, J.E., W.T. Peterson, and S.D. Pierce. 2008. Zooplankton distribution and cross-shelf transfer of carbon in an area of complex mesoscale circulation in the northern California Current. Deep-Sea Research Part I 56:212–231, https://doi.org/10.1016/j.dsr.2008.09.004.
  39. Kug, J., F. Jin, and S. An. 2009. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. Journal of Climate 22:1,499–1,515, https://doi.org/10.1175/2008JCLI2624.1.
  40. Larkin, N.K., and D.E. Harrison. 2005. On the definition of El Niño and associated seasonal average US weather anomalies. Geophysical Research Letters 32, L13705, https://doi.org/10.1029/2005GL022738.
  41. Linkin, M.E., and S. Nigam. 2008. The North Pacific Oscillation–West Pacific teleconnection pattern: Mature-phase structure and winter impacts. Journal of Climate 21:1,979–1,997, https://doi.org/10.1175/2007JCLI2048.1.
  42. Mantua, N.J., and S.R. Hare. 2002. The Pacific Decadal Oscillation. Journal of Oceanography 58:35–44, https://doi.org/10.1023/A:1015820616384.
  43. Mantua, N., S. Hare, Y. Zhang, J. Wallace, and R. Francis. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78:1,069–1,079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
  44. Martinez, E., D. Antoine, F. D’Ortenzio, and B. Gentili. 2009. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science 326:1,253–1,256, https://doi.org/10.1126/science.1177012.
  45. Masumoto, Y., H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, and others. 2004. A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). The Journal of the Earth Simulator 1:35–56.  Available online at: https://www.jamstec.go.jp/esc/publication/journal/jes_vol.1/pdf/JES1-3.2-masumoto.pdf (accessed December 26, 2013).
  46. McGillicuddy, D.J., L.A. Anderson, N.R. Bates, T. Bibby, K.O. Buesseler, C.A. Carlson, C.S. Davis, C. Ewart, P.G. Falkowski, S.A. Goldthwait, and others. 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316:1,021–1,026, https://doi.org/10.1126/science.1136256.
  47. Miller, A.J., and N. Schneider. 2000. Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Progress in Oceanography 47:355–379, https://doi.org/10.1016/s0079-6611(00)00044-6.
  48. Newman, M., G. Compo, and M. Alexander. 2003. ENSO-forced variability of the Pacific decadal oscillation. Journal of Climate 16:3,853–3,857, https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.
  49. Niiler, P.P., N.A. Maximenko, and J.C. McWilliams. 2003. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophysical Research Letters 30, 2164, https://doi.org/10.1029/2003GL018628.
  50. Nurhati, I.S., K.M. Cobb, and E. Di Lorenzo. 2011. Decadal-scale SST and salinity variations in the central tropical Pacific: Signatures of natural and anthropogenic climate change. Journal of Climate 24:3,294–3,308, https://doi.org/10.1175/2011JCLI3852.1.
  51. Parada, C., A. Gretchina, S. Vásquez, V. Combes, B. Ernst, A. Sepúlveda, and E. Di Lorenzo. In press. Expanding the conceptual framework of the spatial population structure and life history of jack mackerel in the southeastern Pacific off Central Chile: Oceanic seamount region as potential spawning/nursery habitat. ICES Journal of Marine Science.
  52. Peterson, W.T., and J.E. Keister. 2003. Interannual variability in copepod community composition at a coastal station in the northern California Current: A multivariate approach. Deep Sea Research Part II 50:2,499–2,517, https://doi.org/10.1016/S0967-0645(03)00130-9.
  53. Qiu, B., N. Schneider, and S. Chen. 2007. Coupled decadal variability in the North Pacific: An observationally constrained idealized model. Journal of Climate 20:3,602–3,620, https://doi.org/10.1175/JCLI4190.1.
  54. Rogers, J.C. 1981. The North Pacific Oscillation. International Journal of Climatology 1:9–57, https://doi.org/10.1002/joc.3370010106.
  55. Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma. 2008. An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. Pp. 157–185 in High Resolution Numerical Modelling of the Atmosphere and Ocean. K. Hamilton and W. Ohfuchi, eds, Springer, New York.
  56. Seager, R., N. Harnik, W.A. Robinson, Y. Kushnir, M. Ting, H.P. Huang, and J. Velez. 2005. Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quarterly Journal of the Royal Meteorological Society 13:1,501–1,527, https://doi.org/10.1256/qj.04.96.
  57. Schneider, N., and B.D. Cornuelle. 2005. The forcing of the Pacific Decadal Oscillation. Journal of Climate 18:4,355–4,373, https://doi.org/10.1175/JCLI3527.1.
  58. Sydeman, B., J.A. Santora, S.A. Thompson, B. Marinovic, and E. Di Lorenzo. 2013. Increasing variance in North Pacific climate relates to unprecedented marine ecosystem variability off California. Global Change Biology 19:1,662–1,675, https://doi.org/10.1111/gcb.12165.
  59. Sydeman, W.J., and M.A. Thompson. 2010. The California Current Integrated Ecosystem Assessment (IEA), Module II: Trends and Variability in Climate-Ecosystem State. Final Report to NOAA/NMFS/Environmental Research Division, 59 pp. Available online at: http://www.faralloninstitute.org/Publications/SydemanThompson2010IEA_Module2.pdf (accessed December 26, 2013).
  60. Taguchi, B., S.P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai. 2007. Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. Journal of Climate 20:2,357–2,377, https://doi.org/10.1175/JCLI4142.1.
  61. Thomas, A.C., P.T. Strub, R.A. Weatherbee, and C. James. 2012. Satellite views of Pacific chlorophyll variability: Comparisons to physical variability, local versus nonlocal influences and links to climate indices. Deep Sea Research Part II 77–80:99–116, https://doi.org/10.1016/j.dsr2.2012.04.008.
  62. Vimont, D.J. 2005. The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. Journal of Climate 18:2,080–2,092, https://doi.org/10.1175/JCLI3365.1.
  63. Vimont, D.J., J.M. Wallace, and D.S. Battisti. 2003. The seasonal footprinting mechanism in the Pacific: Implications for ENSO. Journal of Climate 16:2,668–2,675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.
  64. Walker, G.T., and E.W. Bliss. 1932. World Weather V. Memoirs of the Royal Meteorological Society 4(36):53–84.
  65. Weng, H., S.K. Behera, and T. Yamagata. 2009. Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Climate Dynamics 32:663–674, https://doi.org/10.1007/s00382-008-0394-6.
  66. Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B.P. Kirtman, and F.-F. Jin. 2009. El Niño in a changing climate. Nature 461:511–514, https://doi.org/10.1038/nature08316.
  67. Zhang, Y., J. Wallace, and D. Battisti. 1997. ENSO-like interdecadal variability: 1900–93. Journal of Climate 10:1,004–1,020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.