Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

The existence, sources, distribution, circulation, and physicochemical nature of macroscale oceanic water bodies have long been a focus of oceanographic inquiry. Building on that work, this paper describes an objectively derived and globally comprehensive set of 37 distinct volumetric region units, called ecological marine units (EMUs). They are constructed on a regularly spaced ocean point-mesh grid, from sea surface to seafloor, and attributed with data from the 2013 World Ocean Atlas version 2. The point attribute data are the means of the decadal averages from a 57-year climatology of six physical and chemical environment parameters (temperature, salinity, dissolved oxygen, nitrate, phosphate, and silicate). The database includes over 52 million points that depict the global ocean in x, y, and z dimensions. The point data were statistically clustered to define the 37 EMUs, which represent physically and chemically distinct water volumes based on spatial variation in the six marine environmental characteristics used. The aspatial clustering to produce the 37 EMUs did not include point location or depth as a determinant, yet strong geographic and vertical separation was observed. Twenty-two of the 37 EMUs are globally or regionally extensive, and account for 99% of the ocean volume, while the remaining 15 are smaller and shallower, and occur around coastal features. We assessed the vertical distribution of EMUs in the water column and placed them into classical depth zones representing epipelagic (0 m to 200 m), mesopelagic (200 m to 1,000 m), bathypelagic (1,000 m to 4,000 m) and abyssopelagic (>4,000 m) layers. The mapping and characterization of the EMUs represent a new spatial framework for organizing and understanding the physical, chemical, and ultimately biological properties and processes of oceanic water bodies. The EMUs are an initial objective partitioning of the ocean using long-term historical average data, and could be extended in the future by adding new classification variables and by introducing functionality to develop time-specific EMU distribution maps. The EMUs are an open-access resource, and as both a standardized geographic framework and a baseline physicochemical characterization of the oceanic environment, they are intended to be useful for disturbance assessments, ecosystem accounting exercises, conservation priority setting, and marine protected area network design, along with other research and management applications.

Citation

Sayre, R.G., D.J. Wright, S.P. Breyer, K.A. Butler, K. Van Graafeiland, M.J. Costello, P.T. Harris, K.L. Goodin, J.M. Guinotte, Z. Basher, M.T. Kavanaugh, P.N. Halpin, M.E. Monaco, N. Cressie, P. Aniello, C.E. Frye, and D. Stephens. 2017. A three-​dimensional mapping of the ocean based on environmental data. Oceanography 30(1):90–103, https://doi.org/10.5670/oceanog.2017.116.

Supplementary Materials
References
    Alder, J.R., and S.W. Hostetler. 2015. Web based visualization of large climate data sets. Environmental Modelling & Software 68:175–180, https://doi.org/​10.1016/j.envsoft.2015.02.016.
  1. Bailey, R.G. 1996. Ecosystem Geography. Springer-Verlag, New York, NY, 204 pp. 
  2. Bailey, R.G. 2014. Ecoregions – The Ecosystem Geography of the Oceans and Continents, 2nd ed. Springer, New York, NY, 180 pp.
  3. Beaugrand, G., I. Rombouts, and R.R. Kirby. 2013. Towards an understanding of the pattern of biodiversity in the oceans. Global Ecology and Biogeography 22:440–449, https://doi.org/10.1111/geb.12009
  4. Briggs, J.C., and B.W. Bowen. 2012. A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography 39:12–30, https://doi.org/​10.1111/j.1365-2699.2011.02613.x.
  5. Buesseler, K.O., C.H. Lamborg, P.W. Boyd, P.J. Lam, T.W. Trull, R.R. Bidigare, J.K.B. Bishop, K.L. Casciotti, F. Dehairs, M. Elskens, and others. 2007. Revisiting carbon flux through the ocean’s twilight zone. Science 316(5824):567–570, https://doi.org/10.1126/science.1137959.
  6. Calinski, T., and J. Harabasz. 1974. A dendrite method for cluster analysis. Communications in Statistics 3(1):1–27, https://doi.org/10.1080/​03610927408827101.
  7. Celebi, M., H. Kingravi, and P. Vela. 2013. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications 40(1):210–215, https://doi.org/10.1016/​j.eswa.2012.07.021.
  8. Charette, M.A., and W.H.F. Smith. 2010. The volume of Earth’s ocean. Oceanography 23(2):112–114, https://doi.org/10.5670/oceanog.2010.51.
  9. Coro, G., C. Magliozzi, A. Ellenbroek, K. Kaschner, and P. Pagano. 2016. Automatic classification of climate change effects on marine species distributions in 2050 using the AquaMaps model. Environmental and Ecological Statistics 23:155–180, https://doi.org/10.1007/s10651-015-0333-8.
  10. Costello, M.J. 2009. Distinguishing marine habitat classification concepts for ecological data management. Marine Ecology Progress Series 397:253–268, https://doi.org/10.3354/meps08317
  11. Costello, M.J., and S. Breyer. 2017. Ocean depths: The mesopelagic and implications for global warming. Current Biology 27:113–119, https://doi.org/10.1016/​j.cub.2016.11.042.
  12. Emery, W.J. 2001. Water types and water masses. Pp. 1,556–1,567 in Encyclopedia of Ocean Sciences. J.H. Steele, S.A. Thorpe, and K.K. Turekian, eds, Academic Press, San Diego, CA, 3,399 pp.
  13. Emery, W.J., and J. Meincke. 1986. Global water masses: Summary and review. Oceanologica Acta 9(4):383–391.
  14. FAO (Food and Agriculture Organization). 2016. Coordinating Working Party Handbook of Fishery Statistical Standards, Section H: Fishing Areas for Statistical Purposes. FAO Fisheries and Aquaculture Department, http://www.fao.org/fishery/cwp/handbook/h/en.
  15. FGDC (Federal Geographic Data Committee). 2012. Coastal and Marine Ecological Classification Standard Version 4.0. Report FGDC-STE-18-2012, Federal Geographic Data Committee Secretariat, US Geological Survey, Reston, Virginia, 343 pp.
  16. Fontaine, A., R. Devillers, P.R. Peres-Neto, and L.E. Johnson. 2015. Delineating marine ecological units: A novel approach for deciding which taxonomic group to use and which taxonomic resolution to choose. Diversity and Distributions 21(10):1,167–1,180, https://doi.org/10.1111/ddi.12361.
  17. Gallagher, J., J. Orcutt, P. Simpson, D. Wright, J. Pearlman, and L. Raymond. 2015. Facilitating open exchange of data and information. Earth Science Informatics 8:721–739, https://doi.org/​10.1007/s12145-014-0202-2.
  18. Garcia, H.E., R.A. Locarnini, T.P. Boyer, J.I. Antonov, O.K. Baranova, M.M. Zweng, J.R. Reagan, and D.R. Johnson. 2014a. World Ocean Atlas 2013 version 2 (WOA13 V2), Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. S. Levitus, ed., and A. Mishonov, technical ed., NOAA Atlas NESDIS 75, NOAA National Centers for Environmental Information, Silver Spring, MD, 27 pp.
  19. Garcia, H.E., R.A. Locarnini, T.P. Boyer, J.I. Antonov, O.K. Baranova, M.M. Zweng, J.R. Reagan, and D.R. Johnson. 2014b. World Ocean Atlas 2013 version 2 (WOA13 V2), Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate). S. Levitus, ed., and A. Mishonov, technical ed., NOAA Atlas NESDIS 76, NOAA National Centers for Environmental Information, Silver Spring, MD, 25 pp.
  20. Gebbie, G., and P. Huybers. 2010. Total matrix intercomparison: A method for determining the geometry of water-mass pathways. Journal of Physical Oceanography 40:1,710–1,728, https://doi.org/​10.1175/2010JPO4272.1.
  21. Gebbie, G., and P. Huybers. 2011. How is the ocean filled? Geophysical Research Letters 138, L06604, https://doi.org/10.1029/2011GL046769.
  22. Hall, A. 2014. Projecting regional change. Science 346(6216):1,461–1,462, https://doi.org/10.1126/​science.aaa0629.
  23. Hardman-Mountford, N.J., T. Hirata, K. Richardson, and J. Aiken. 2009. An objective methodology for the classification of ecological pattern into biomes and provinces for the pelagic ocean. Remote Sensing of Environment 112:3,341–3,352, https://doi.org/10.1016/j.rse.2008.02.016
  24. Harris, P.T., M. Macmillan-Lawler, J. Rupp, and E.K. Baker. 2014. Geomorphology of the oceans. Marine Geology 352:4–24, https://doi.org/10.1016/​j.margeo.2014.01.011.
  25. Harris, P.T., and T. Whiteway. 2009. High seas marine protected areas: Benthic environmental conservation priorities from a GIS analysis of global ocean biophysical data. Ocean & Coastal Management 52:22–38, https://doi.org/10.1016/​j.ocecoaman.2008.09.009.
  26. Heinzer, T.J., M.D. Williams, E.C. Dogrul, T.N. Kadir, C.F. Brush, and F.I. Chung. 2012. Implementation of a feature-constraint mesh generation algorithm within a GIS. Computers and Geosciences 49:46–52, https://doi.org/10.1016/​j.cageo.2012.06.004.
  27. Holt, B.G., J. Lessard, M.K. Borregaard, S.A. Fritz, M.B. Araújo, D. Dimitrov, P. Fabre, C.H. Graham, G.R. Graves, K.A. Jønsson, and others. 2013. An update of Wallace’s zoogeographic regions of the world. Science 339(6115):74–78, https://doi.org/10.1126/science.1228282.
  28. ICES (International Council for Exploration of the Seas). 2004. Report of the Regional Ecosystem Study Group for the North Sea. April 5–7, 2004, ICES CM 2004/ACE:06, International Council for Exploration of the Seas, Copenhagen, Denmark.
  29. IHO (International Hydrographic Organization). 2002. International Hydrographic Organization Publication S-23: Limits of Oceans and Seas, draft 4th ed. International Hydrographic Organization, Paris, Monaco, https://www.iho.int/mtg_docs/com_wg/S-23WG/S-23WG_Misc/Draft_2002/Draft_2002.htm.
  30. Jain, A.K. 2010. Data clustering: 50 years beyond k-means. Pattern Recognition Letters 31(8):651–666, https://doi.org/10.1016/​j.patrec.2009.09.011.
  31. Jamieson, A.J. 2011. Ecology of deep oceans: Hadal trenches. eLS, https://doi.org/10.1002/​9780470015902.a0023606.
  32. Kavanaugh, M.T., B. Hales, M. Saraceno, Y.H. Spitz, A.E. White, and R.M. Letelier. 2014. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology. Progress in Oceanography 120:291–304, https://doi.org/10.1016/j.pocean.2013.10.013
  33. Kavanaugh, M.T., M.J. Oliver, F.P. Chavez, R.M. Letelier, F.E. Muller-Karger, and S.C. Doney. 2016. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES Journal of Marine Science 73(7):1,839–1,850, https://doi.org/10.1093/icesjms/fsw086.
  34. Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zietschrift 15(3):259–263.
  35. Li, Z., and C. Gold. 2004. Multi-dimensional geospatial technology for geosciences. Computers and Geosciences 30(4):321–323, https://doi.org/​10.1016/j.cageo.2003.09.010.
  36. Liu, J., T. Dietz, S.R. Carpenter, M. Alberti, C. Folke, E. Moran, A.N. Pell, P. Deadman, T. Kratz, J. Lubchenco, and others. 2007. Complexity of coupled human and natural systems. Science 317(5844):1,513–1,516, https://doi.org/​10.1126/science.1144004.
  37. Liu, J., H.A. Mooney, V. Hull, S.J. Davis, J. Gaskell, T. Hertel, and J. Lubchenco, K.C. Seto, P. Gleick, C. Kremen, and S. Li. 2015. Systems integration for global sustainability. Science 347(6225), https://doi.org/10.1126/science.1258832.
  38. Locarnini, R.A., A.V. Mishonov, J.I. Antonov, T.P. Boyer, H.E. Garcia, O.K. Baranova, M.M. Zweng, C.R. Paver, J.R. Reagan, D.R. Johnson, and others. 2013. World Ocean Atlas 2013 version 2 (WOA13 V2), Volume 1: Temperature. S. Levitus, ed., and A. Mishonov, technical ed., NOAA Atlas NESDIS 73, NOAA National Centers for Environmental Information, Silver Spring, MD, 40 pp.
  39. Longhurst, A. 2007. Ecological Geography of the Sea, 2nd ed. Academic Press, San Diego, CA, 542 pp., https://doi.org/10.1016/B978-012455521-1/50000-0.
  40. Lutz, M.J., K. Caldeira, R.B. Dunbar, and M.J. Behrenfeld. 2007. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research 112, C10011, https://doi.org/​10.1029/2006JC003706.
  41. Milligan, G.W., and M.C. Cooper. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2):159–179, https://doi.org/10.1007/bf02294245.
  42. Milligan, G.W., and M.C. Cooper. 1988. A study of standardization of variables in cluster analysis. Journal of Classification 5:181–204, https://doi.org/10.1007/BF01897163.
  43. Odum, E.P. 1971. Fundamentals of Ecology, 3rd ed. W.B. Saunders, Philadelphia, PA, 574 pp.
  44. Oliver, M.J., S. Glenn, J.T. Kohut, A.J. Irwin, O.M. Schofield, M. Moline, and W.P. Bissett. 2004. Bioinformatic approaches for objective detection of water masses on continental shelves. Journal of Geophysical Research 109, C07S04, https://doi.org/10.1029/2003JC002072.
  45. Oliver, M.J., and A.J. Irwin. 2008. Objective global ocean biogeographic provinces. Geophysical Research Letters 35, L15601, https://doi.org/​10.1029/2008GL034238.
  46. Pinet, P.R. 2009. Invitation to Oceanography, 5th ed. Jones and Bartlett Publishers Inc. 
  47. Proud, R., M.J. Cox, and A.S. Brierley. 2017. Biogeography of the global ocean’s mesopelagic zone. Current Biology 27:113–119, https://doi.org/​10.1016/j.cub.2016.11.003.
  48. Reygondeau, G., C. Guieu, F. Benedetti, J. Irrison, S. Ayata, S. Gasparini, and P. Koubbi. 2017. Biogeochemical regions of the Mediterranean Sea: An objective multidimensional and multivariate environmental approach. Progress in Oceanography 151:138–148, https://doi.org/10.1016/​j.pocean.2016.11.001.
  49. Reygondeau, G., A. Longhurst, E. Martinez, G. Beaugrand, D. Antoine, and O. Maury. 2013. Dynamic biogeochemical provinces in the global ocean. Global Biogeochemical Cycles 27(4):1,046–1,058, https://doi.org/10.1002/gbc.20089
  50. Sayre, R., J. Dangermond, C. Frye, R. Vaughan, P. Aniello, S. Breyer, D. Cribbs, D. Hopkins, R. Nauman, W. Derrenbach­er, and others. 2014. A New Map of Global Ecological Land Units: An Ecophysiographic Stratification Approach. Association of American Geographers, Washington, DC, 46 pp.
  51. Schoch, G.C., D.M. Albert, and C.S. Shanley. 2014. An estuarine habitat classification for a complex fjordal island archipelago. Estuaries and Coasts 37(1):160–176, https://doi.org/10.1007/s12237-013-9622-3.
  52. Sherman, K. 2014. Adaptive management institutions at the regional level: The case of Large Marine Ecosystems. Ocean and Coastal Management 90:38–49, https://doi.org/10.1016/​j.ocecoaman.2013.06.008
  53. Sherman, K., M. Sissenwine, V. Christensen, A. Duda, G. Hempel, C. Ibe, S. Levin, D. Lluch-Belda, G. Matishov, J. McGlade, and others. 2005. A global movement toward an ecosystem approach to marine resources management. Marine Ecology Progress Series 300:275–279.
  54. Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A. Lombana, S.A. Lourie, and others. 2007. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 57(7):573–583, https://doi.org/10.1641/B570707.
  55. Stal, L.J. 2016. The euphotic realm. Pp. 209–225 in The Marine Microbiome. L.J. Stal and M.S. Cretoiu, eds, Springer International Publishing, Switzerland. 
  56. Sverdrup, H.U., M.W. Johnson, and R.H. Fleming. 1942. The Oceans: Their Physics, Chemistry and General Biology. Prentice-Hall, Englewood Cliffs, New York, 1,087 pp.
  57. Thresher, R.E., J.M. Guinotte, R.J. Matear, and A.J. Hobday. 2015. Options for managing impacts of climate change on a deep-sea community. Nature Climate Change 5:635–639, https://doi.org/10.1038/nclimate2611.
  58. Tittensor, D.P., C. Mora, W. Jetz, H.K. Lotze, D. Ricard, E.V. Berghe, and B. Worm. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466(7310):1,098–1,101, https://doi.org/10.1038/nature09329.
  59. Tomczak, M. 1999. Some historical, theoretical, and applied aspects of quantitative water mass analysis. Journal of Marine Research 57:275–303, https://doi.org/10.1357/002224099321618227.
  60. UN (United Nations). 1982. Article 57: Breadth of the Exclusive Economic Zone. United Nations Convention on the Law of the Sea of 10 December 1982, United Nations Secretary General, Paris, France.
  61. UNESCO (United Nations Educational Scientific and Cultural Organization). 2009. Global Open Oceans and Deep Seabed (GOODS): Biogeographic Classification. UNESCO-IOC Technical Series 84, United Nations Educational and Scientific Council Intergovernmental Oceanographic Commission, Paris, France, 96 pp.
  62. Vivone, G., L. Alparone, J. Channussot, M. Dalla Mura, A. Garzelli, G. Licciardi, R. Restaino, and L. Wald. 2015. A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing 53(5):2,565–2,586, https://doi.org/10.1109/TGRS.2014.2361734.
  63. Wallace, R.B., H. Baumann, J.S. Grear, R.C. Aller, and C.J. Gobler. 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal, and Shelf Science 148:1–13, https://doi.org/10.1016/​j.ecss.2014.05.027.
  64. Watling, L., J. Guinotte, M.R. Clark, and C.R. Smith. 2013. A proposed biogeography of the deep ocean floor. Progress in Oceanography 111:91–112, https://doi.org/10.1016/j.pocean.2012.11.003.
  65. Wright, D.J., ed. 2016. Ocean Solutions, Earth Solutions, 2nd ed. Esri Press, Redlands, CA, 500 pp. 
  66. Wright, D.J., M.J. Blongewicz, P.N. Halpin, and J. Breman. 2007. Arc Marine: GIS for a Blue Planet. Esri Press, Redlands, CA, 202 pp. 
  67. Zweng, M.M., J.R. Reagan, J.I. Antonov, R.A. Locarnini, A.V. Mishonov, T.P. Boyer, H.E. Garcia, O.K. Baranova, D.R. Johnson, D. Seidov, and M.M. Biddle. 2013. World Ocean Atlas 2013 version 2 (WOA13 V2), Volume 2: Salinity. S. Levitus, ed., and A. Mishonov, technical ed., NOAA Atlas NESDIS 74, NOAA National Centers for Environmental Information, Silver Spring, Maryland, 39 pp.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.