Oceanography The Official Magazine of
The Oceanography Society
Volume 24 Issue 04

View Issue TOC
Volume 24, No. 4
Pages 32 - 41

OpenAccess

Typhoon-Ocean Interaction in the Western North Pacific: Part 2

By IamFei Pun , Ya-Ting Chang, I.-I. Lin , Tswen Yung Tang, and Ren-Chieh Lien 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

During summer 2010, the Taiwan National Science Council and the US Office of Naval Research conducted a large typhoon-ocean field experiment named Impact of Typhoons on the Ocean in the Pacific (ITOP). The goals were to investigate the highly complex physical processes associated with typhoon-ocean interactions. This article highlights the Taiwanese efforts during the ITOP experiments, including work on operational satellite-derived upper-ocean thermal structure and in situ observations from moorings. A brief review of typhoon-ocean interaction research in Taiwan is also provided.

Citation

Pun, I.F., Y.-T. Chang, I.-I. Lin, T.Y. Tang, and R.-C. Lien. 2011. Typhoon-ocean interaction in the western North Pacific: Part 2. Oceanography 24(4):32–41, https://doi.org/10.5670/oceanog.2011.92.

References
    Black, P.G., E.A. D’Asaro, W.M. Drennan, J.R. French, P.P. Niiler, T.B. Sanford, E.J. Terrill, E.J. Walsh, and J.A. Zhang. 2007. Air-sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bulletin of the American Meteorological Society 88:357–374, https://doi.org/10.1175/BAMS-88-3-357.
  1. Chang, Y., H.T. Liao, M.A. Lee, J.W. Chan, W.J. Shieh, K.T. Lee, G.H. Wang, and Y.C. Lan. 2008. Multisatellite observation on upwelling after the passage of Typhoon Hai-Tang in the southern East China Sea. Geophysical Research Letters 35, L03612, https://doi.org/10.1029/2007GL032858.
  2. Chang, Y.‐T., T.Y. Tang, S.‐Y. Chao, M.‐H. Chang, D.S. Ko, Y.J. Yang, W.‐D. Liang, and M.J. McPhaden. 2010. Mooring observations and numerical modeling of thermal structures in the South China Sea. Journal of Geophysical Research 115, C10022, https://doi.org/10.1029/2010JC006293.
  3. Chiang, T.-L., C.-R. Wu, and L.-Y. Oey. 2011. Typhoon Kai-Tak: An ocean’s perfect storm. Journal of Physical Oceanography 41:221–233, https://doi.org/10.1175/2010JPO4518.1.
  4. Cione, J.J., and E.W. Uhlhorn. 2003. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Monthly Weather Review 131:1,783–1,796, https://doi.org/10.1175//2562.1.
  5. D’Asaro, E., P. Black, L. Centurioni, P. Harr, S. Jayne, I.-I. Lin, C. Lee, J. Morzel, R. Mrvaljevic, P.P. Niiler, and others. 2011. Typhoon-ocean interaction in the western North Pacific: Part 1. Oceanography 24(4):24–31, https://doi.org/10.5670/oceanog.2011.91.
  6. D’Asaro, E.A., T.B. Sanford, P.P. Niiler, and E.J. Terrill. 2007. Cold wake of Hurricane Frances. Geophysical Research Letters 34, L15609, https://doi.org/10.1029/2007GL030160.
  7. Emanuel, K.A. 1986. An air-sea interaction theory for tropical cyclones: Part I. Steady-state maintenance. Journal of the Atmospheric Sciences 42:1,062–1,071, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
  8. Emanuel, K.A. 1995. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. Journal of the Atmospheric Sciences 52:3,969–3,976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.
  9. Emanuel, K.A. 1997. Some aspects of hurricane inner-core dynamics and energetics. Journal of the Atmospheric Sciences 54:1,014–1,026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.
  10. Emanuel, K.A. 1999. Thermodynamic control of hurricane intensity. Nature 401:665–669.
  11. Emanuel, K.A. 2001. The contribution of tropical cyclones to meridional heat transported by the oceans. Journal of Geophysical Research 106(D14):14,771–14,781, https://doi.org/10.1029/2000JD900641.
  12. Goni, G., M. DeMaria, J. Knaff, C. Sampson, I. Ginis, F. Bringas, A. Mavume, C. Lauer, I.-I. Lin, M.M. Ali, and others. 2009. Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography 22(3):190–197, https://doi.org/10.5670/oceanog.2009.78.
  13. Goni, G.J., S. Kamholtz, S. Garzoli, and D.B. Olson. 1996. Dynamics of the Brazil–Malvinas confluence based upon inverted echo sounders and altimetry. Journal of Geophysical Research 101(7):16,273–16,289, https://doi.org/10.1029/96JC01146.
  14. Goni, G.J., and J.A. Trinanes. 2003. Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Transactions, American Geophysical Union 84:573–580, https://doi.org/10.1029/2003EO510001.
  15. Holliday, C.R., and A.H. Thompson. 1979. Climatological characteristics of rapidly intensifying typhoons. Monthly Weather Review 107:1,022–1,034, https://doi.org/10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.
  16. Hung, C.-C., and G.-C. Gong. 2011. Biogeochemical responses in the southern East China Sea after typhoons. Oceanography 24(4):42–51, https://doi.org/10.5670/oceanog.2011.93.
  17. Leipper, D., and D. Volgenau. 1972. Hurricane heat potential of the Gulf of Mexico. Journal of Physical Oceanography 2:218–224.
  18. Lin, I.-I. In press. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. Journal of Geophysical Research–Oceans.
  19. Lin, I.-I., M.-D. Chou, and C.-C. Wu. 2011. The impact of a warm ocean eddy on Typhoon Morakot (2009): A preliminary study from satellite observations and numerical modelling. Terrestrial Atmospheric and Oceanic Sciences 22(6), https://doi.org/10.3319/TAO.2011.08.19.01(TM).
  20. Lin, I.-I., W.T. Liu, C.C. Wu, J.C.H. Chiang, and C.H. Sui. 2003a. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophysical Research Letters 30, 1131, https://doi.org/10.1029/2002GL015674.
  21. Lin, I.-I., W.T. Liu, C.C. Wu, G.T.F. Wong, C. Hu, Z. Chen, W.D. Liang, Y. Yang, and K.K. Liu. 2003b. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters 30, 1718, https://doi.org/10.1029/2003GL017141.
  22. Lin, I.-I., C.C. Wu, K.A. Emanuel, I.H. Lee, C.R. Wu, and I.F. Pun. 2005. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review 133:2,635–2,649, https://doi.org/10.1175/MWR3005.1.
  23. Lin, I.-I., C.C. Wu, I.F. Pun, and D.S. Ko. 2008. Upper ocean thermal structure and the western North Pacific category-5 typhoons: Part I. Ocean features and category-5 typhoon’s intensification. Monthly Weather Review 136:3,288–3,306, https://doi.org/10.1175/2008MWR2277.1.
  24. Lin, I.-I., C.H. Chen, I.F. Pun, W.T. Liu, and C.C. Wu. 2009a. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophysical Research Letters 36, L03817, https://doi.org/10.1029/2008GL035815.
  25. Lin, I.-I., I.F. Pun, and C.C. Wu. 2009b. Upper ocean thermal structure and the western North Pacific category-5 typhoons: Part II. Dependence on translation speed. Monthly Weather Review 137:3,744–3,757, https://doi.org/10.1175/2009MWR2713.1.
  26. Price, J.F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography 11:153–175.
  27. Price, J.F. 2009. Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Science 5:351–368, https://doi.org/10.5194/os-5-351-2009.
  28. Price, J.F., J. Morzel, and P.P. Niiler. 2008. Warming of SST in the cool wake of a moving hurricane. Journal of Geophysical Research 113, C07010, https://doi.org/10.1029/2007JC004393.
  29. Pun, I.F., I.I. Lin, C.R. Wu, D.S. Ko, and W.T. Liu. 2007. Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon intensity forecast. IEEE Transactions on Geoscience and Remote Sensing 45(6):1,616–1,630, https://doi.org/10.1109/TGRS.2007.895950.
  30. Scharroo, R., W.H.F. Smith, and J.L. Lillibridge. 2005. Satellite altimetry and the intensification of Hurricane Katrina. Eos, Transactions, American Geophysical Union 86:366–367, https://doi.org/10.1029/2005EO400004
  31. Shay, L.K., G.J. Goni, and P.G. Black. 2000. Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review 128:1,366–1,383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.
  32. Shiah, F.K., S.Y. Chung, S.J. Kao, G.C. Gong, and K.K. Liu. 2000. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Continental Shelf Research 20:2,029–2,044, https://doi.org/10.1016/S0278-4343(00)00055-8.
  33. Tsai, Y.L., C.S. Chern, and J. Wang. 2008. Typhoon induced upper ocean cooling off northeastern Taiwan. Geophysical Research Letters 35(14), L14605, https://doi.org/10.1029/2008GL034368.
  34. Tseng, Y.H., S. Jan, D.E. Dietrich, I.I. Lin, Y.T. Chang, and T.Y. Tang. 2010. Modeled oceanic response and sea surface cooling to typhoon Kai-Tak. Terrestrial, Atmospheric and Oceanic Sciences 21:85–98, https://doi.org/10.3319/TAO.2009.06.08.02(IWNOP).
  35. Webster, P.J., G.J. Holland, J.A. Curry, and H.R. Chang. 2005. Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309:1,844–1,846, https://doi.org/10.1126/science.1116448.
  36. Wentz, F.J., C. Gentemann, D. Smith, and D. Chelton. 2000. Satellite measurements of sea surface temperature through clouds. Science 288(5467): 847–850, https://doi.org/10.1126/science.288.5467.847.
  37. Wu, C.-R., Y.-L. Chang, L.-Y. Oey, C.-W.J. Chang, and Y.-C. Hsin. 2008. Air-sea interaction between Tropical Cyclone Nari and Kuroshio. Geophysical Research Letters 35, L12605, https://doi.org/10.1029/2008GL033942.
  38. Wu, C.C., C.Y. Lee, and I.-I. Lin. 2007. The effect of the ocean eddy on tropical cyclone intensity. Journal of the Atmospheric Sciences 64:3,562–3,578, https://doi.org/10.1175/JAS4051.1.
  39. Wu, C.-C., P.-H. Lin, S. Aberson, T.-C. Yeh, W.-P. Huang, K.-H. Chou, J.-S. Hong, G.-C. Lu, C.-T. Fong, K.-C. Hsu, and others. 2005. Dropwindsonde observations for typhoon surveillance near the Taiwan region (DOTSTAR): An overview. Bulletin of the American Meteorological Society 86:787–790, https://doi.org/10.1175/BAMS-86-6-787.
  40. Zheng, Z.-W., C.-R. Ho, and N.-J. Kuo. 2008. Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang. Geophysical Research Letters 35, L20603, https://doi.org/10.1029/2008GL035524.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.