Oceanography The Official Magazine of
The Oceanography Society
Volume 24 Issue 04

View Issue TOC
Volume 24, No. 4
Pages 78 - 87


Turbulent Properties of Internal Waves in the South China Sea

By Louis St. Laurent , Harper Simmons, Tswen Yung Tang, and YuHuai Wang 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Luzon Strait and South China Sea waters are among the most energetic internal wave environments in the global ocean. Strong tides and stratification in Luzon Strait give rise to internal waves that propagate west into the South China Sea. The energy carried by the waves is dissipated via turbulent processes. Here, we present and contrast the relatively few direct observations of turbulent dissipation in South China Sea internal waves. Frictional processes active in the bottom boundary layer dissipate some of the energy along China’s continental shelf. It appears that more energy is lost in Taiwanese waters of the Dongsha Plateau, where the waves reach their maximum amplitudes, and where the bottom topography abruptly shoals from 3,000 m in the deep basin to 1,000 m and shallower on the plateau. There, energy dissipation by turbulence reaches 1 W m–2, on par with the conversion rates of Luzon Strait.


St. Laurent, L., H. Simmons, T.Y. Tang, and Y.H. Wang. 2011. Turbulent properties of internal waves in the South China Sea. Oceanography 24(4):78–87, https://doi.org/10.5670/oceanog.2011.96.


Alford, M.H., J.A. MacKinnon, J.D. Nash, H.L. Simmons, A. Pickering, J.M. Klymak, R. Pinkel, O. Sun, L. Rainville, R. Musgrave, and others. 2011. Energy flux and dissipation in Luzon Strait: Two tales of two ridges. Journal of Physical Oceanography, https://doi.org/10.1175/JPO-D-11-073.1.

Beardsley, R.C., T.F. Duda, J.F. Lynch, J.D. Irish, S.R. Ramp, C.-S. Chiu, T.Y. Tang, Y.-J. Yang, and G. Fang. 2004. Barotropic tide in the northeast South China Sea. IEEE Journal of Oceanic Engineering 29:1,075–1,086, https://doi.org/10.1109/JOE.2004.833226.

Chang, M.-H., R.-C. Lien, T.Y. Tang, E.A. D’Asaro, and Y.J. Yang. 2006. Energy flux of nonlinear internal waves in northern South China Sea. Geophysical Research Letters 33, L03607, https://doi.org/10.1029/2005GL025196.

Duda, T.F., J.F. Lynch, J.D. Irish, R.C. Beardsley, S.R. Ramp, C.-S. Chiu, T.Y. Tang, and Y.J. Yang. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering 29:1,105–1,130, https://doi.org/10.1109/JOE.2004.836998.

Farmer, D., L. Qiang, and J.-H. Park. 2009. Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmosphere-Ocean 47:267–280, https://doi.org/10.3137/OC313.2009.

Gawarkiewicz, G., J. Wang, M. Caruso, S.R. Ramp, K. Brink, and F. Bahr. 2004. Shelfbreak circulation and thermohaline structure in the northern South China Sea: Contrasting spring conditions in 2000 and 2001. IEEE Journal of Oceanic Engineering 29:1,131–1,143, https://doi.org/10.1109/JOE.2004.839123.

Klymak, J.M., R. Pinkel, C.-T. Liu, A.K. Liu, and L. David. 2006. Prototypical solitons in the South China Sea. Geophysical Research Letters 33, L11607, https://doi.org/10.1029/2006GL025932.

Lien, R.-C., T.Y. Tang, M.H. Chang, and E.A. D’Asaro. 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters 32, L05615, https://doi.org/10.1029/2004GL022012.

Lien, R.-C., E.A. D’Asaro, F. Henyey, M.H. Chang, T.Y. Tang, and Y.J. Yang. In press. Trapped core formation within a shoaling nonlinear internal wave. Journal of Physical Oceanography.

Lueck, R.G., F. Wolk, and H. Yamazaki. 2002. Oceanic velocity microstructure measurements in the 20th century. Journal of Oceanography 58:153–174.

Munk, W., and C. Wunsch. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research Part I 45:1,977–2,010, https://doi.org/10.1016/S0967-0637(98)00070-3.

Orr, M.H., and P.C. Mignerey. 2003. Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves. Journal of Geophysical Research 108, 3064, https://doi.org/10.1029/2001JC001163.

Osborn, T.R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography 10:83–89, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

Ramp, S.R., D. Tang, T.F. Duda, J.F. Lynch, A.K. Liu, C.-S. Chiu, F. Bahr, H.-R. Kim, and Y.J. Yang. 2004. Internal solitons in the northeastern South China Sea: Part I. Sources and deep water propagation. IEEE Journal of Oceanic Engineering 29:1,157–1,181, https://doi.org/10.1109/JOE.2004.840839.

Shroyer, E., J. Moum, and J. Nash. 2010. Energy transformations and dissipation of nonlinear internal waves over New Jersey’s continental shelf. Nonlinear Processes in Geophysics 17:345–360, https://doi.org/10.5194/npg-17-345-2010.

St. Laurent, L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters 35, L23615, https://doi.org/10.1029/2008GL035520.

St. Laurent, L., and H. Simmons. 2006. Estimates of power consumed by mixing in the ocean interior. Journal of Climate 19:4,877–4,890.

St. Laurent, L., J.M. Toole, and R.W. Schmitt. 2001. Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. Journal of Physical Oceanography 31:3,476–3,495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

Simmons, H., M.-H. Chang, Y.-T. Chang, S.-Y. Chao, O. Fringer, C.R. Jackson, D.-S. Ko. 2011. Modeling and prediction of internal waves in the South China Sea. Oceanography 24(4):88–99, https://doi.org/10.5670/oceanog.2011.97.

Tian, J., Q. Yang, and W. Zhao. 2009. Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography 39:3,191–3,203, https://doi.org/10.1175/2009JPO3899.1.

Wang, Y.H., C.F. Dai, and Y.Y. Chen. 2007. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophysical Research Letters 34, L18609, https://doi.org/10.1029/2007GL030658.

Yang, Y.J., T.Y. Tang, M.H. Chang, A.K. Liu, M.-K. Hsu, and S.R. Ramp. 2004. Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE Journal of Oceanic Engineering 29:1,182–1,199, https://doi.org/10.1109/JOE.2004.841424.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.