Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 04

View Issue TOC
Volume 29, No. 4
Pages 96 - 105

OpenAccess

Temporal Changes in the Antarctic Circumpolar Current: Implications for the Antarctic Continental Shelves

By Sarah T. Gille , Darren C. McKee, and Douglas G. Martinson 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Some of the most rapid melting of ice sheets and ice shelves around Antarctica has occurred where the Antarctic Circumpolar Current (ACC) is in close proximity to the Antarctic continent. Several mechanisms have been hypothesized by which warming trends in the ACC could lead to warmer temperatures on the Antarctic continental shelves and corresponding thinning of ice shelves. One possibility is that a southward shift in the dominant westerly winds has led to a southward shift in the ACC, bringing comparatively warm (1°C–3°C) Circumpolar Deep Water (CDW) in closer contact with Antarctica; however, satellite altimetry does not provide strong evidence for this option. A second possibility is that stronger winds have led to stronger poleward eddy heat transport, bringing more CDW southward. In addition, submarine canyons and winds are hypothesized to be critical for transporting CDW across the continental shelves. The specific mechanisms and the relative roles of westerly winds, easterly winds, and wind-stress curl remain areas of active research.

Citation

Gille, S.T., D.C. McKee, and D.G. Martinson. 2016. Temporal changes in the Antarctic Circumpolar Current: Implications for the Antarctic continental shelves. Oceanography 29(4):96–105, https://doi.org/10.5670/oceanog.2016.102.

References
    Abernathey, R., J. Marshall, and D. Ferreira. 2011. The dependence of Southern Ocean meridional overturning on wind stress. Journal of Physical Oceanography 41:2,261–2,278, https://doi.org/​10.1175/JPO-D-11-023.1.
  1. Allen, S.E., and B.M. Hickey. 2010. Dynamics of advection-driven upwelling over a shelf break submarine canyon. Journal of Geophysical Research 115, C08018, https://doi.org/10.1029/2009JC005731.
  2. Arblaster, J.M., G.A. Meehl, and D.J. Karoly. 2011. Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophysical Research Letters 38, L02701, https://doi.org/10.1029/2010GL045384.
  3. Assmann, K.M., A. Jenkins, D.R. Shoosmith, D.P. Walker, S.S. Jacobs, and K.W. Nicholls. 2013. Variability of Circumpolar Deep Water transport onto the Amundsen Sea continental shelf through a shelf break trough. Journal of Geophysical Research 118:6,603–6,620, https://doi.org/10.1002/2013JC008871.
  4. Baldwin, M.P., D.W. Thompson, E.F. Shuckburgh, W.A. Norton, and N.P. Gillett. 2003. Weather from the stratosphere? Science 301:317–319, https://doi.org/10.1126/science.1085688
  5. Böning, C., A. Dispert, M. Visbeck, S.R. Rintoul, and F.U. Schwarzkopf. 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience 1:864–869, https://doi.org/10.1038/ngeo362.
  6. Bracegirdle, T.J., E. Shuckburgh, J.-B. Sallee, Z. Wang, A.J.S. Meijers, N. Bruneau, T. Phillips, and L.J. Wilcox. 2013. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. Journal of Geophysical Research 118:547–562, https://doi.org/10.1002/jgrd.50153.
  7. Cai, W. 2006. Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophysical Research Letters 33, L03712, https://doi.org/10.1029/2005GL024911.
  8. Carvajal, G.K., A.K. Wåhlin, L.E.B. Eriksson, and L.M.H. Ulander. 2013. Correlation between synthetic aperture radar surface winds and deep water velocity in the Amundsen Sea, Antarctica. Remote Sensing 5:4,088–4,106, https://doi.org/10.3390/rs5084088
  9. Chapman, C.C. 2014. Southern Ocean jets and how to find them: Improving and comparing common jet detection methods. Journal of Geophysical Research 119:4,3184,339, https://doi.org/10.1002/2014JC009810.
  10. Cook, A.J., P.R. Holland, M.P. Meredith, T. Murray, A. Luckman, and D.G. Vaughan. 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353:283–286, https://doi.org/10.1126/science.aae0017.
  11. Dinniman, M.S., X.S. Asay-Davis, B.K. Galton-Fenzi, P.R. Holland, A. Jenkins, and R. Timmermann. 2016. Modeling ice shelf/ocean interaction in Antarctica: A review. Oceanography 29(4):144–153, https://doi.org/10.5670/oceanog.2016.106.
  12. Dinniman, M.S., J.M. Klinck, and E.E. Hofmann. 2012. Sensitivity of Circumpolar Deep Water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. Journal of Climate 25:4,799–4,816, https://doi.org/10.1175/JCLI-D-11-00307.1.
  13. Dinniman, M.S., J.M. Klinck, and W.O. Smith Jr. 2011. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Research Part II 58:1,508–1,523, https://doi.org/10.1016/j.dsr2.2010.11.013.
  14. Dong, S., J. Sprintall, and S.T. Gille. 2006. Location of the Polar Front from AMSR-E satellite sea surface temperature measurements. Journal of Physical Oceanography 36:2,075–2,089, https://doi.org/​10.1175/JPO2973.1.
  15. Dutrieux, P., J. De Rydt, A. Jenkins, P.R. Holland, H.K. Ha, S.H. Lee, E.J. Steig, Q. Ding, E.P. Abrahamsen, and M. Schröder. 2014. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343:174–178, https://doi.org/10.1126/science.1244341.
  16. Fyfe, J.C., and O.A. Saenko. 2006. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophysical Research Letters 33, L06701, https://doi.org/10.1029/2005GL025332.
  17. Ganachaud, A., and C. Wunsch. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453457, https://doi.org/​10.1038/35044048.
  18. Gent, P.R. 2016. Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annual Review of Marine Science 8:79–94, https://doi.org/10.1146/annurev-marine-122414-033929.
  19. Gille, S.T. 1994. Mean sea surface height of the Antarctic Circumpolar Current from Geosat data: Method and application. Journal of Geophysical Research 99:18,255–18,273, https://doi.org/10.1029/94JC01172.
  20. Gille, S.T. 2002. Warming of the Southern Ocean since the 1950s. Science 295:1,275–1,277, https://doi.org/10.1126/science.1065863.
  21. Gille, S.T. 2008. Decadal-scale temperature trends in the Southern Hemisphere ocean. Journal of Climate 21:4,749–4,765, https://doi.org/10.1175/2008JCLI2131.1.
  22. Gille, S.T. 2014. Meridional displacement of the Antarctic Circumpolar Current. Philosophical Transactions of the Royal Society A 372, 20130273, https://doi.org/10.1098/rsta.2013.0273.
  23. Gillett, N.P., J.C. Fyfe, and D.E. Parker. 2013. Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophysical Research Letters 40:2,302–2,306, https://doi.org/10.1002/grl.50500.
  24. Graham, R.M., A.M. de Boer, K.J. Heywood, M. Chapman, and D.P. Stevens, 2012. Southern Ocean fronts: Controlled by wind or topography? Journal of Geophysical Research 117, C08018, https://doi.org/10.1029/2012JC007887.
  25. Griesel, A., M.R. Mazloff, and S.T. Gille. 2012. Mean dynamic topography in the Southern Ocean: Evaluating Antarctic Circumpolar Current transport. Journal of Geophysical Research 117, C01020, https://doi.org/10.1029/2011JC007573.
  26. Griggs, J.A., and J.L. Bamber. 2011. Antarctic ice-shelf thickness from satellite radar altimetry. Journal of Glaciology 57:485–498.
  27. Hallberg, R., and A. Gnanadesikan. 2006. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. Journal of Physical Oceanography 36:3,312–3,330, https://doi.org/10.1175/JPO2980.1.
  28. Hellmer, H.H., F. Kauker, R. Timmermann, J. Determann, and J. Rae. 2012. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485:225–228, https://doi.org/10.1038/nature11064.
  29. Heywood, K.J., L.C. Biddle, L. Boehme, P. Dutrieux, M. Fedak, A. Jenkins, R.W. Jones, J. Kaiser, H. Mallett, A.C. Naveira Garabato, and others. 2016. Between the devil and the deep blue sea: The role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography 29(4):118–129, https://doi.org/10.5670/oceanog.2016.104.
  30. Hogg, A. McC., M.P. Meredith, J.R. Blundell, and C. Wilson. 2008. Eddy heat flux in the Southern Ocean: Response to variable wind forcing. Journal of Climate 21:608–620, https://doi.org/​10.1175/2007JCLI1925.1
  31. Hogg, A.McC., M.P. Meredith, D.P. Chambers, E.P. Abrahamsen, C.W. Hughes, and A.K. Morrison. 2015. Recent trends in the Southern Ocean eddy field. Journal of Geophysical Research 120:257267, https://doi.org/​10.1002/2014JC010470.
  32. Howard, S.L., J. Hyatt, and L. Padman. 2004. Mixing in the pycnocline over the western Antarctic Peninsula shelf during Southern Ocean GLOBEC. Deep Sea Research Part II 51:1,965–1,979. 
  33. Jacobs, S.S., A. Jenkins, G.F. Giulivi, and P. Dutrieux. 2011. Stronger ocean circulation and increased melting under Pine Island glacier ice shelf. Nature Geoscience 4:519–523, https://doi.org/10.1038/ngeo1188.
  34. Jenkins, A., P. Dutrieux, S. Jacobs, E.J. Steig, G.H. Gudmundsson, J. Smith, and K.J. Heywood. 2016. Decadal ocean forcing and Antarctic ice sheet response: Lessons from the Amundsen Sea. Oceanography 29(4):106–117, https://doi.org/10.5670/oceanog.2016.103.
  35. Kelly, K.A., and S.T. Gille. 1990. Gulf Stream surface transport and statistics at 69°W from the Geosat altimeter. Journal of Geophysical Research 95:3,149–3,161, https://doi.org/10.1029/JC095iC03p03149.
  36. Klocker, A., and D.P. Marshall. 2014. Advection of baroclinic eddies by depth mean flow. Geophysical Research Letters 41:3,517–3,521, https://doi.org/​10.1002/2014GL060001.
  37. Marshall, J., and K. Speer. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience 5:171–180, https://doi.org/10.1038/ngeo1391.
  38. Martinson, D.G. 2012. Antarctic Circumpolar Current’s role in the Antarctic ice system: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology 335–336:71–74, https://doi.org/​10.1016/j.palaeo.2011.04.007.
  39. Martinson, D.G., and D.C. McKee. 2012. Transport of warm Upper Circumpolar Deep Water onto the western Antarctic Peninsula continental shelf. Ocean Science 8:433–442, https://doi.org/10.5194/os-8-433-2012.
  40. Maximenko, N.A., and P.P. Niiler. 2005. Hybrid decade-mean global seal level with mesoscale resolution. Pp. 55–59 in Recent Advances in Marine Science and Technology. N. Saxena, ed., PACON International, Honolulu, Hawaii.
  41. Mazloff, M.R., P. Heimbach, and C. Wunsch. 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceanography 40:880–899, https://doi.org/10.1175/2009JPO4236.1.
  42. Meijers, A.J.S., E. Shuckburgh, N. Bruneau, J.-B. Sallee, T.J. Bracegirdle, and Z. Wang. 2012. Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. Journal of Geophysical Research 117, C12008, https://doi.org/10.1029/2012JC008412.
  43. Meredith, M.P. 2016. Understanding the structure of changes in the Southern Ocean eddy field. Geophysical Research Letters 43:5,829–5,832, https://doi.org/10.1002/2016GL069677.
  44. Meredith, M.P., and A.M. Hogg. 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophysical Research Letters 33, L16608, https://doi.org/10.1029/2006GL026499.
  45. Moffat, C., B. Owens, and R.C. Beardsley. 2009. On the characteristics of Circumpolar Deep Water intrusions to the west Antarctic Peninsula continental shelf. Journal of Geophysical Research 114, C05017, https://doi.org/10.1029/2008JC004955.
  46. Morrow, R., F. Birol, D. Griffin, and J. Sudre. 2004. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophysical Research Letters 31, L24311, https://doi.org/10.1029/2004GL020974.
  47. Morrow, R., M.L. Ward, A.M. Hogg, and S. Pasquet. 2010. Eddy response to Southern Ocean climate modes. Journal of Geophysical Research 115, C10030, https://doi.org/10.1029/2009JC005894
  48. Munday, D.R., H.L. Johnson, and D.P. Marshall. 2013. Eddy saturation of equilibrated circumpolar currents. Journal of Physical Oceanography 43:507–532, https://doi.org/​10.1175/JPO-D-12-095.1
  49. Orsi, A.H., T. Whitworth III, and W.D. Nowlin Jr. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I 42:641–673, https://doi.org/10.1016/0967-0637(95)00021-W.
  50. Paolo, F.S., H.A. Fricker, and L. Padman. 2015. Volume loss from Antarctic ice shelves is accelerating. Science 348:327–331, https://doi.org/10.1126/​science.aaa0940.
  51. Patara, L., C.W. Böning, and A. Biastoch. 2016. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophysical Research Letters 43:4,517–4,523, https://doi.org/10.1002/2016GL069026.
  52. Pavlis, N.K., S.A. Holmes, S. Kenyon, and J.K. Factor. 2012. The development and evaluation of the earth gravitational model 2008 (EGM2008). Journal of Geophysical Research 117, 4406, https://doi.org/10.1029/2011JB008916.
  53. Polvani, L.M., M. Previdi, and C. Deser. 2011. Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophysical Research Letters 38, L04707, https://doi.org/10.1029/2011GL046712.
  54. Pritchard, H.D., S.R.M. Ligtenberg, H.A. Fricker, D.G. Vaughan, M.R. van den Broeke, and L. Padman. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505, https://doi.org/10.1038/nature10968.
  55. Purkey, S.G., and G.C. Johnson. 2010. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. Journal of Climate 23:6,336–6,351, https://doi.org/10.1175/2010JCLI3682.1.
  56. Purkey, S.G., and G.C. Johnson. 2013. Antarctic bottom water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of Climate 26:6,105–6,122, https://doi.org/10.1175/JCLI-D-12-00834.1.
  57. Rignot, E., J.L. Bamber, M.R. van den Broeke, C. Davis, Y. Li, W.J. van de Berg, and E. van Meijgaard. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1:106–110, https://doi.org/10.1038/ngeo102.
  58. Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl. 2013. Ice-shelf melting around Antarctica. Science 341:266–270, https://doi.org/10.1126/science.1235798
  59. Rintoul, S.R., and S. Sokolov. 2001. Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). Journal of Geophysical Research 106:2,815–2,832, https://doi.org/10.1029/2000JC900107.
  60. Rio, M.-H., and F. Hernandez. 2004. A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. Journal of Geophysical Research 109, C12032, https://doi.org/10.1029/2003JC002226.
  61. Rio, M-H., P. Schaeffer, G. Moreaux, J.-M. Lemoine, and E. Bronner. 2009. A new mean dynamic topography computed over the global ocean from GRACE data, altimetry and in-situ measurements. Poster presented at OceanObs09 symposium, September 21–15, 2009, Venice, Italy. 
  62. Rocha, C., T.K. Chereskin, S.T. Gille, and D. Menemenlis. 2016. Mesoscale to submesoscale wavenumber spectra in Drake Passage. Journal of Physical Oceanography 46:601–620, https://doi.org/10.1175/JPO-D-15-0087.1.
  63. Rodriguez, A.R., M.R. Mazloff, and S.T. Gille. 2016. An oceanic heat transport pathway to the Amundsen Sea Embayment. Journal of Geophysical Research 121:3,337–3,349, https://doi.org/10.1002/2015JC011402.
  64. Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels. 2015. Unabated planetary warming and its ocean structure since 2006. Nature Climate Change 5:240–245, https://doi.org/10.1038/nclimate2513.
  65. Santoso, A., M.H. England, and A.C. Hirst. 2006 Circumpolar deep water circulation and variability in a coupled climate model. Journal of Physical Oceanography 36:1,523–1,552, https://doi.org/10.1175/JPO2930.1.
  66. Schmidtko, S., K.J. Heywood, A.F. Thompson, and S. Aoki. 2014. Multidecadal warming of Antarctic waters. Science 346:1,227–1,231, https://doi.org/10.1126/science.1256117.
  67. Schofield, O., H. Ducklow, K. Bernard, S. Doney, D. Patterson-Fraser, K. Gorman, D. Martinson, M. Meredith, G. Saba, S. Stammerjohn, and others. 2013. Penguin biogeography along the West Antarctic Peninsula: Testing the Canyon Hypothesis with Palmer LTER observations. Oceanography 26(3):204–206, https://doi.org/​10.5670/oceanog.2013.63.
  68. Screen, J.A., N.P. Gillett, D.P. Stevens, G.J. Marshall, and H.K. Roscoe. 2009. The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. Journal of Climate 22:806–818, https://doi.org/10.1175/​2008JCLI2416.1.
  69. Shao, A., S.T. Gille, S. Mecking, and L. Thompson. 2015. Properties of the Subantarctic Front and Polar Front from the skewness of sea level anomaly. Journal of Geophysical Research 120:5,179–5,193, https://doi.org/10.1002/2015JC010723.
  70. Smith, W.H.F., and D.T. Sandwell. 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1,957–1,962, https://doi.org/10.1126/science.277.5334.1956.
  71. Sokolov, S., and S.R. Rintoul. 2009a. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: Part 1. Mean circumpolar paths. Journal of Geophysical Research 114, C11018, https://doi.org/10.1029/2008JC005108.
  72. Sokolov, S., and S.R. Rintoul. 2009b. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: Part 2. Variability and relationship to sea surface height. Journal of Geophysical Research 114, C11019, https://doi.org/10.1029/2008JC005108.
  73. Solomon, A., and L.M. Polvani. 2016. Highly significant responses to anthropogenic forcings of the midlatitude jet in the Southern Hemisphere. Journal of Climate 29:3,463–3,470, https://doi.org/10.1175/JCLI-D-16-0034.1.
  74. Spence, P., S.M. Griffies, M.H. England, A.M. Hogg, O.A. Saenko, and N.C. Jourdain. 2014. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophysical Research Letters 41:4,601–4,610, https://doi.org/10.1002/2014GL060613.
  75. Sprintall, J. 2008. Long term trends and interannual variability of temperature in Drake Passage. Progress in Oceanography 77:316–330, https://doi.org/10.1016/j.pocean.2006.06.004
  76. St-Laurent, P., J.M. Klinck, and M.S. Dinniman. 2013. On the role of coastal troughs in the circulation of warm Circumpolar Deep Water on Antarctic shelves. Journal of Physical Oceanography 43:51–64, https://doi.org/10.1175/JPO-D-11-0237.1.
  77. Stewart, A.L., and A.F. Thompson. 2012. Sensitivity of the ocean’s deep overturning circulation to easterly Antarctic winds. Geophysical Research Letters 39, L18604, https://doi.org/10.1029/2012GL053099.
  78. Stewart, A.L., and A.F. Thompson. 2015. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic shelf break. Geophysical Research Letters 42:432–440, https://doi.org/10.1002/2014GL062281
  79. Swart, N., and J.C. Fyfe. 2012. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophysical Research Letters 39, L16711, https://doi.org/​10.1029/2012GL052810.
  80. Swart, N.C., J.C. Fyfe, N. Gillett, and G.J. Marshall. 2015. Comparing trends in the Southern Annular Mode and Surface Westerly Jet. Journal of Climate 28:8,840–8,859, https://doi.org/10.1175/JCLI-D-15-0334.1.
  81. Thoma, M., A. Jenkins, D. Holland, and S. Jacobs. 2008. Modeling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf. Geophysical Research Letters 35, L18602, https://doi.org/10.1029/2008GL034939.
  82. Thompson, D.W.J., M.P. Baldwin, and S. Solomon. 2005. Stratosphere-troposphere coupling in the Southern Hemisphere. Journal of the Atmospheric Sciences 62:708–715, https://doi.org/10.1175/JAS-3321.1.
  83. Thompson, D.W.J., and J.M. Wallace. 2000. Annular modes in the extratropical circulation: Part I. Month-to-month variability. Journal of Climate 13:1,000–1,016, https://doi.org/10.1175/1520-0442(2000)013​<1000:AMITEC>2.0.CO;2.
  84. Thompson, K.R., and E. Demirov. 2006. Skewness of sea level variability of the world’s oceans. Journal of Geophysical Research 111, C05005, https://doi.org/10.1029/2004JC002839.
  85. Turner, J., J.C. Comiso, G.J. Marshall, T.A. Lachlan-Cope, T. Bracegirdle, T. Maksym, M.P. Meredith, Z. Wang, and A. Orr. 2009. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophysical Research Letters 36, L08502, https://doi.org/​10.1029/2009GL037524.
  86. Turner, J., T. Phillips, J.S. Hosking, G.J. Marshall, and A. Orr. 2013. The Amundsen Sea low. International Journal of Climatology 33:1,818–1,829, https://doi.org/10.1002/joc.3558.
  87. Wåhlin, A.K., O. Kalén, L. Arneborg, G. Björk, G.K. Carvajal, H.K. Ha, T.W. Kim, S.H. Lee, J.H. Lee, and C. Stranne. 2013. Variability of warm deep water inflow in a submarine trough on the Amundsen Sea Shelf. Journal of Physical Oceanography 43:2,054–2,070, https://doi.org/​10.1175/JPO-D-12-0157.1.
  88. Walker, D.P., A. Jenkins, K.M. Assmann, D.R. Shoosmith, and M.A. Brandon. 2013. Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. Journal of Geophysical Research 118:2,906–2,918, https://doi.org/10.1002/jgrc.20212.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.