Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 02

View Issue TOC
Volume 26, No. 2
Pages 34 - 45

OpenAccess

Seasat to RADARSAT-2: Research to Operations

By Frank M. Monaldo , Christopher R. Jackson , and William G. Pichel  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

In 2013, the National Oceanic and Atmospheric Administration (NOAA) brought to operations a synthetic aperture radar (SAR)-derived subkilometer resolution wind speed product. This transition from research to operations comes 35 years after the 1978 launch of the US Seasat satellite, which demonstrated that radar backscatter from active microwave instruments in orbit can provide detailed information about ocean surface waves, winds, and sea surface height. NOAA’s initial source of data for operational SAR winds is Radarsat-2, which was launched in 2007 by the Canadian Space Agency. In this paper, we discuss the history of our understanding of the relationship between microwave measurements, particularly SAR measurements, and wind speed, and how a spaceborne instrument first designed to measure ocean waves is now routinely used to derive wind speeds.

Citation

Monaldo, F.M., C.R. Jackson, and W.G. Pichel. 2013. Seasat to RADARSAT-2: Research to operations. Oceanography 26(2):34–45, https://doi.org/10.5670/oceanog.2013.29.

References
    Ager, T.P. 2013. An introduction to synthetic aperture radar imaging. Oceanography 26(2):20–33, https://doi.org/10.5670/oceanog.2013.28.
  1. Attema, E.P.W. 1986. An experimental campaign for the determination of the radar signature of the ocean at C-band. Pp. 791–799 in Proceedings of the Third International Colloquium on Spectral Signatures of Objects in Remote Sensing. ESA SP-247, Les Arcs, France.
  2. Attema, E.P.W. 1991. The Active Microwave Instrument on-board the ERS-1 satellite. Proceedings of the IEEE 79:791–799, https://doi.org/10.1109/5.90158.
  3. Beal, R.C. 1980. The Seasat SAR Wind and Ocean Wave Monitoring Capabilities: A Case Study for Pass 1339m, 28 September 1978. Technical Report S1R 79U–019, Johns Hopkins Applied Physics Lab, Laurel, MD, 15 pp.
  4. Beal, R.C., D.G. Tilley, and F.M. Monaldo. 1983. Large and small-scale spatial evolution of digitally processed ocean wave spectra from Seasat synthetic aperture radar. Journal of Geophysical Research 88:1,761–1,778, https://doi.org/10.1029/JC088iC03p01761.
  5. Boggs, D.H. 1982. Seasat Geophysical Data Record (GDR) Users Handbook: Scatterometer. Technical Report D-129, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 262 pp.
  6. Bragg, W.L. 1913. The diffraction of short electromagnetic waves by a crystal. Proceedings of the Cambridge Philosophical Society 17:43–57.
  7. Brown, R.A. 1980. Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Reviews of Geophysics 18:683–697, https://doi.org/10.1029/RG018i003p00683.
  8. Brown, R.A. 1986. On a satellite scatterometer as an anemometer. Journal of Geophysical Research 91:2,221–2,232, https://doi.org/10.1029/JC088iC03p01663.
  9. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark. 1997. A unified directional spectrum for long and short wind-driven waves. Journal of Geophysical Research 102:15,781–15,796, http://dx.doi.org/10.1029/97JC00467.
  10. Fetterer, F., D. Gineris, and C.C. Wackerman. 1998. Validating a scatterometer wind algorithm for ERS-1 SAR. IEEE Transactions on Geoscience and Remote Sensing 36:479–492, http://dx.doi.org/10.1109/36.662731.
  11. Figa-Saldana, J., J.J.W. Wilson, E. Attema, R. Gelsthorpe, M.R. Drinkwater, and A. Stoffelen. 2002. The advanced scatterometer ASCAT on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Canadian Journal of Remote Sensing 28:404–412, http://dx.doi.org/10.5589/m02-035.
  12. Fu, L.-L., and B. Holt. 1982. Seasat Views Oceans and Seas with Synthetic Aperture Radar. Technical Report JPL Publication 81–102, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. Available online at: http://southport.jpl.nasa.gov/reports/seasat (accessed August 4, 2013).
  13. Gerling, T.W. 1986. Structure of the surface wind field from the Seasat SAR. Journal of Geophysical Research 91:2,308–2,320, https://doi.org/10.1029/JC091iC02p02308.
  14. Helfrich, S.R., D. McNamara, B.H. Ramsay, T. Baldwin, and T. Kasheta. 2007. Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrological Processes 21:1,576–1,586, https://doi.org/10.1002/hyp.6720.
  15. Hersbach, H. 2003. CMOD5: An improved geophysical model function for ERS C-band scatterometry. Internal report, European Centre for Medium-Range Weather Forecast.
  16. Hersbach, H. 2008. CMOD5.N: A C-band geophysical model function for equivalent neutral wind. Internal Report 554, European Centre for Medium-Range Weather Forecast.
  17. Horstmann, J. 1997. Investigation of wind speed retrieval with synthetic aperture radar aboard the ERS-1/2 satellites. Technical Report GKSS 97/E/55, GKSS.
  18. Horstman, J., S. Falachetti, and S. Maresca. 2011. SAR wind speed retrieval with respect to tropical cyclones. International Ocean Vector Winds Science Team Meeting, Annapolis, MD.
  19. Horstmann, J., W. Kock, S. Lehner, and R. Tonboe. 2000. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Transactions on Geoscience and Remote Sensing 38:2,122–2,131, http://dx.doi.org/10.1109/36.868871.
  20. Horstmann, J., W. Koch, S. Lehner, and R. Tonboe. 2002. Ocean winds from RADARSAT-1 ScanSAR. Canadian Journal of Remote Sensing 28:524–533, https://doi.org/10.5589/m02-043.
  21. Horstmann, J., H. Schiller, J. Schultz-Stellenfelth, and S. Lehner. 2003. Global wind speed retrieval from SAR. IEEE Transactions on Geoscience and Remote Sensing 41:2,277–2,286, https://doi.org/10.1109/TGRS.2003.814658.
  22. IFREMER. 1996. Off-line Wind Scatterometer ERS Products: User Manual, Version 2.0. C2-MUT-W-01–IF, IFREMER.
  23. Isoguchi, O., and M. Shimada. 2009. An L-Band ocean geophysical model function derived from PALSAR. IEEE Transactions on Geoscience and Remote Sensing 47:1,925–1,936, http://dx.doi.org/10.1109/TGRS.2008.2010864.
  24. Jones, W.L., V.E. Delnore, and E.M. Bracalente. 1981. Spaceborne Synthetic Aperture Radar for oceanography. Pp. 87–94 in The Study of Mesoscale Winds. The Johns Hopkins University Press, Baltimore, MD.
  25. Jordan, R.L. 1980. The Seasat: A synthetic aperture radar system. IEEE Journal of Oceanic Engineering 5:154–164, https://doi.org/10.1109/JOE.1980.1145451.
  26. Kerr, D.E. 1951. The Propagation of Short Radio Waves. MIT Radiation Laboratory Series, vol. 13, McGraw-Hill, New York.
  27. Lehner, S., J. Horstmann, W. Koch, and W. Rosenthal. 1998. Mesoscale wind measurements using recalibrated ERS SAR images. Journal of Geophysical Research 103:7,847–7,856, http://dx.doi.org/10.1029/97JC02726.
  28. Loescher, K.A., G.S. Young, B.A. Coller, and N.S. Winstead. 2006. Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Monthly Weather Review 124:437–453, https://doi.org/10.1175/MWR3037.1.
  29. Monaldo, F., V. Kerbaol, and the SAR Wind Team. 2003. The SAR measurement of ocean surface winds: An overview. In Proceedings of the Second Workshop on Coastal and Marine Applications of SAR. European Space Agency, Svalbard, Norway. Available online at: http://earth.esa.int/workshops/cmasar_2003/papers/E02mona.pdf (accessed August 2, 2013).
  30. Monaldo, F.M., D.R. Thompson, R.C. Beal, W.G. Pichel, and P. Clemente-Colón. 2001. Comparison of SAR-derived wind speed with model predictions and buoy comparisons. IEEE Transactions on Geoscience and Remote Sensing 39:2,587–2,600, https://doi.org/10.1109/36.974994.
  31. Monaldo, F.M., D.R. Thompson, W.G. Pichel, and P. Clemente-Colón. 2004. A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Transactions on Geoscience and Remote Sensing 42:283–291, http://dx.doi.org/10.1109/TGRS.2003.817213.
  32. Moore, R.K. 1974. Simultaneous active and passive microwave response of the earth: The Skylab RADSCAT experiment. Pp. 189–217 in Proceedings of the Ninth International Symposium on Remote Sensing of the Environment, vol. I. University of Michigan, Ann Arbor, MI.
  33. Moreira, A., P. Prats-Iraola, M. Younis, G. Kriger, I. Hajnsk, and K.P. Papathanassiou. 2013. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine 1:6–43, https://doi.org/10.1109/MGRS.2013.2248301.
  34. Naderi, F.M., M.H. Freilich, and D.G. Long. 1991. Spaceborne radar measurement of wind velocity over the ocean: An overview of the NSCAT scatterometer system. Proceedings of the IEEE 79:850–866, https://doi.org/10.1109/5.90163.
  35. Phillips, O.M. 1988. Radar returns from the sea surface: Bragg scattering and breaking waves. Journal of Physical Oceanography 18:1,065–1,074, http://dx.doi.org/10.1175/1520-0485(1988)018<1065:RRFTSS>2.0.CO;2.
  36. Pichel, W.G., and P. Clemente-Colón. 2000. NOAA CoastWatch SAR applications and demonstration. The Johns Hopkins University Technical Digest 21:49–57.
  37. Plant, W.J. 1990. Bragg scattering of electromagnetic waves from the air/sea interface. Pp. 41–108 in Surface Waves and Fluxes, vol. II. G.L. Geernaert and W.J. Plant, eds, Kluwer Academic Publishers.
  38. Rice, S.O. 1951. Reflection of electromagnetic waves from slightly rough surfaces. Communications on Pure and Applied Mathematics 4:351–378.
  39. Romeiser, R., W. Alpers, and V. Wissmann. 1997. An improved composite model for the radar backscattering cross section of the ocean surface: Part 1. Theory and model validation/optimization by scatterometer data. Journal of Geophysical Research 102:25,237–25,250, https://doi.org/10.1029/97JC00190.
  40. Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, W. Wang, and J.G. Powers. 2007. A description of the Advanced Research WRF version 2. Technical Report, NCAR Technical Note NCAR/TN-468+STR, Mesoscale and Microscale Meteorological Division, National Center for Atmospheric Research, Boulder, CO. Available online at: http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf (accessed August 2, 2013).
  41. Spencer, M.W., C. Wu, and D.G. Long. 1997. Tradeoffs in the design of a spaceborne scanning pencil-beam scatterometer: Application to SeaWinds. IEEE Transactions on Geoscience and Remote Sensing 35:115–126, http://dx.doi.org/10.1109/36.551940.
  42. Stoffelen, A., and D.L.T. Anderson. 1993. Wind retrieval and ERS-1 scatterometer radar backscatter measurements. Advances in Space Research 13:53–60, https://doi.org/10.1016/0273-1177(93)90527-I.
  43. Stoffelen, A., and D. Anderson. 1997a. Scatterometer data interpretation: Measurement and inversion. Journal of Atmospheric and Oceanic Technology 14:1,298–1,313, https://doi.org/10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2.
  44. Stoffelen, A., and D. Anderson. 1997b. Scatterometer data interpretation: Estimation and validation of the transfer function: CMOD4. Journal of Geophysical Research 102(C3):5,767–5,780, http://dx.doi.org/10.1029/96JC02860.
  45. Thompson, D.R., and R.C. Beal. 2000. Mapping high-resolution wind fields using synthetic aperture radar. The Johns Hopkins University Technical Digest 21:58–67.
  46. Thompson, D.R., T.M. Elfouhaily, and B. Chapron. 1999. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. Pp. 1,671–1,673 in Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium, vol. 3. IGARSS ’98, https://doi.org/10.1109/IGARSS.1998.692411.
  47. Thompson, D.R., J. Horstmann, A. Mouche, N.S. Winstead, R. Sterner, and F.M. Monaldo. 2012. Comparison of high-resolution wind fields extracted from TerraSAR-X SAR imagery with predictions from the WRF mesoscale model. Journal of Geophysical Research 117, C02035, https://doi.org/10.1029/2011JC007526.
  48. Thompson, D.R., F.M. Monaldo, N.S. Winstead, W.G. Pichel, and P. Clemente-Colón. 2001. Combined estimates improve high-resolution coastal wind mapping. Eos, Transactions, American Geophysical Union 82:368–374, https://doi.org/10.1029/01EO00278.
  49. Vachon, P.W., and F.W. Dobson. 1996. Validation of wind vector retrieval from ERS-1 SAR images over the ocean. The Global Atmosphere-Ocean System 5:177–187.
  50. Valenzuela, G.R. 1968. Scattering of electromagnetic waves from a tilted slightly rough surface. Radio Science 3:1,057–1,066.
  51. Vesecky, J.F., and R.H. Stewart. 1982. The observation of ocean surface phenomena using imagery from the SEASAT synthetic aperture radar. Journal of Geophysical Research 87:3,397–3,430, https://doi.org/10.1029/JC087iC05p03397.
  52. Wackerman, C.C. 2000. Estimating wind vectors from RADARSAT synthetic aperture radar imagery. Technical Report 10032100-1-T, Veridian ERIM International, Ann Arbor, MI.
  53. Wackerman, C.C., W.G. Pichel, and P. Clemente-Colón. 2003. Automated estimation of wind vectors from SAR. Paper presented at the 12th Conference on Interactions of the Sea and Atmosphere, 83rd AMS Annual Meeting, Long Beach, CA. Abstract available online at: https://ams.confex.com/ams/annual2003/techprogram/paper_58270.htm (accessed August 2, 2013).
  54. Wackerman, C.C., R. Rufenach, R.A. Shuchman, J.A. Johannessen, and K.L. Davidson. 1996. Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Transactions on Geoscience and Remote Sensing 34:1,343–1,352, https://doi.org/10.1109/36.544558.
  55. Weissman, D.E., D. King, and T.W. Thompson. 1979. Relationship between hurricane surface winds and L-band radar backscatter from the sea surface. Journal of Applied Meteorology 18:1,023–1,034, http://dx.doi.org/10.1175/1520-0450(1979)018<1023:RBHSWA>2.0.CO;2.
  56. Winstead, N.S., B Colle, N. Bond, G. Young, J. Olson, K. Loescher, F. Monaldo, D. Thompson, and William Pichel. 2006. Using SAR remote sensing, field observations, and models to better understand coastal flows in the Gulf of Alaska. Bulletin of the American Meteorological Society 87:788–800, http://dx.doi.org/10.1175/BAMS-87-6-787.
  57. Wright, J.W. 1966. Backscattering from capillary waves with application to sea clutter. IEEE Transactions on Antennas and Propagation 14:749–754, https://doi.org/10.1109/TAP.1966.1138799.
  58. Wright, J.W. 1968. A new model for sea clutter. IEEE Transactions on Antennas and Propagation 16:217–223, https://doi.org/10.1109/TAP.1968.1139147.
  59. Yu. T.-W., and V.M. Gerald. 2004. Evaluation of NCEP operational model forecasts of surface wind and pressures fields over the oceans. Paper presented at the 16th Conference on Numerical Weather Prediction, Seattle, WA, January 2004. Abstract available online at: https://ams.confex.com/ams/84Annual/techprogram/paper_68792.htm (accessed August 2, 2013).
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.