Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 01

View Issue TOC
Volume 27, No. 1
Pages 196 - 213

OpenAccess

Persistent Organic Pollutants (POPs), Polycyclic Aromatic Hydrocarbons (PAHs), and Plastics: Examples of the Status, Trend, and Cycling of Organic Chemicals of Environmental Concern in the Ocean

By John W. Farrington  and Hideshige Takada 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Four decades of research have provided a reasonable understanding of the outline of the biogeochemical cycles of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in coastal ocean and surface ocean ecosystems, including atmospheric transport to the sea, air-sea exchange processes, and the role of particulate matter in removing these chemicals from surface waters. It is clear that deep ocean fish are contaminated with POPs. However, despite available sampling and analytical capabilities, deep ocean ecosystems are much less sampled and understood. A multidecade assessment of POPs and PAHs in US coastal waters using bivalve sentinel organisms documents high concentrations near urban areas and also some stations where concentrations have begun to decline. The results are consistent with coastal sediments near urban areas being a leaky sink for POPs and PAHs, and sources from land continuing to contribute these contaminants to the sea. Other studies document coastal and continental margin surface sediments as a sink, albeit a potentially leaky sink, for POPs and PAHs. Floating plastic debris, including small pellets, has reemerged as an oceanic environmental concern. A “Pellet Watch” assessing plastic pellets and associated POPs and PAHs is underway. Enhanced studies of deep-ocean ecosystems are recommended. The findings are also relevant to biogeochemical cycles for emerging organic pollutants.

Citation

Farrington, J.W., and H. Takada. 2014. Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics: Examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean. Oceanography 27(1):196–213, https://doi.org/10.5670/oceanog.2014.23.

References
    Abramowicz, D.A. 1990. Aerobic and anaerobic biodegradation of PCBs: A review. Critical Reviews in Biotechnology 10:241–251, https://doi.org/10.3109/07388559009038210.
  1. Adams, R.G., R. Lohmann, L.A. Fernandez, J.K. MacFarlane, and P.M. Gschwend. 2007. Polyethylene devices: Passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environmental Science & Technology 41:1,317–1,323, https://doi.org/10.1021/es0621593.
  2. Bacon, M.P., D.W. Spencer, and P.G. Brewer. 1976. 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter. Earth and Planetary Science Letters 32:277–296, https://doi.org/10.1016/0012-821X(76)90068-6.
  3. Bagulayan, A., J.N. Bartlett-Roa, A.L. Carter, B.G. Inman, E.M. Keen, E.C. Orenstein, N.V. Patin, K.N.S. Sato, E.C. Sibert, A.E. Simmons, and others. 2012. Journey to the center of the gyre: The fate of the Tohoku tsunami debris. Oceanography 25(2):200–207, https://doi.org/10.5670/oceanog.2012.55.
  4. Bianchi, T., and E. Canuel. 2011. Chemical Biomarkers in Aquatic Systems. Princeton University Press, Princeton, NJ, 396 pp.
  5. Bidleman, T.F., R.W. MacDonald, J.P. Snow, eds. 2005. Sources, occurrence, trends and pathways of contaminants in the Arctic. Science of the Total Environment 342(1–3):1–314.
  6. Blumer, M., G. Souza, and J. Sass. 1970. Hydrocarbon pollution of edible shellfish. Marine Biology 5:195–20, https://doi.org/10.1007/BF00346906.
  7. Boonyatumanond, R., G. Wattayakorn, A. Togo, and H. Takada. 2006. Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments. Marine Pollution Bulletin 52:942–956, https://doi.org/10.1016/j.marpolbul.2005.12.015.
  8. Bouloubasi, I., V. Roussiez, M. Azzoug, and A. Lorre. 2012. Sources, dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons (PAH) in the NW Mediterranean margin, Gulf of Lions. Marine Chemistry 144:18–28, https://doi.org/10.1016/j.marchem.2012.07.003.
  9. Bourgeault, A., and C. Courlay-France. 2013. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools. Science of the Total Environment 454–455:328–336, https://doi.org/10.1016/j.scitotenv.2013.03.021.
  10. Burns, K.A., and J.P. Villeneuve. 1983. Biogeochemical processes affecting the distribution and vertical transport of hydrocarbon residues in the coastal Mediterranean. Geochimica et Cosmochimica Acta 47:995–1,006, https://doi.org/10.1016/0016-7037(83)90229-6.
  11. Burns, K.A., and J-P. Villeneuve. 1987. Chlorinated hydrocarbons in the open Mediterranean ecosystems and implications for mass balance calculations. Marine Chemistry 20:337–359, https://doi.org/10.1016/0304-4203(87)90067-3.
  12. Butler, P.A. 1973. Residues in fish, wildlife, and estuaries: Organochlorine residues in estuarine mollusks. Pesticide Monitoring Journal 6(4):238–268.
  13. Camilli, R., C.M. Reddy, D.R. Yoerger, B.A.S. VanMooy, M.V. Jakuba, J.C. Kinsey, C.P. McIntyre, S.P. Sylva, and J.V. Maloney. 2010. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204, https://doi.org/10.1126/science.1195223.
  14. Cantillo, A.Y., ed. 1991. Mussel Watch Worldwide Literature Survey. NOAA Technical Memorandum NOS ORCA 63, Rockville, MD, USA.
  15. Carpenter, E.J., and K.L. Smith Jr. 1972. Plastics on the Sargasso Sea surface. Science 175:1,240–1,241, https://doi.org/10.1126/science.175.4027.1240.
  16. Carson, R. 1962. Silent Spring. Houghton Mifflin Company, Boston, MA, 400 pp.
  17. CAS (Chemical Abstracts Service). 2013. Regulated Chemicals. CHEMLIST, an electronic collection of thousands of chemical substances that are regulated in key markets across the globe. http://www.cas.org/content/regulated-chemicals (accessed October 21, 2013).
  18. Dabrowska, H., O. Kopko, R. Turja, K. Lehtonen, A. Gόra, L. Polak-Juszczak, J. Warzocha, and S. Kholodkevich. 2013. Sediment contaminants and contaminant levels and biomarkers in caged mussels (Mytilus trossulus) in the southern Baltic Sea. Marine Environmental Research 84:1–9, https://doi.org/10.1016/j.marenvres.2012.11.001.
  19. Dachs, J.J., M. Bayona, and J. Albaigés. 1997a. Spatial distribution, vertical profiles and budget of organochlorine compounds in Western Mediterranean seawater. Marine Chemistry 57:313–324, https://doi.org/10.1016/S0304-4203(97)00016-9.
  20. Dachs, J., J.M. Bayona, C. Raoux, and J. Albaigés. 1997b. Spatial, vertical distribution and budget of polycyclic aromatic hydrocarbons in the western Mediterranean seawater. Environmental Science & Technology 31:682–688, https://doi.org/10.1021/es960233j.
  21. Dachs, J., R. Lohmann, W. Ockenden, L. Méjanelle, S. Eisenreich, and K.C. Jones. 2002. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environmental Science & Technology 36:4,229–4,237, https://doi.org/10.1021/es025724k.
  22. Dawe, C., and J. Stegeman, organizers. 1991. Symposium on Chemically Contaminated Aquatic Resources and Human Cancer Risk. Environmental Health Perspectives 90:2–154.
  23. Derraik, J.G.B. 2002. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin 44:842–852, https://doi.org/10.1016/S0025-326X(02)00220-5.
  24. Deyme, R., I. Bouloubassi, M.-H. Taphanel-Valt, J.-C. Miquel, A. Lorre, J.C. Marty, and L. Méjanelle. 2011. Vertical fluxes of aromatic and aliphatic hydrocarbons in the northwestern Mediterranean Sea. Environmental Pollution 159:3,681–3,691, https://doi.org/10.1016/j.envpol.2011.07.017.
  25. Doyle, M.J., W. Watson, N.M. Bowlin, and S.B. Sheavly. 2011. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific Ocean. Marine Environmental Research 71:41–52, https://doi.org/10.1016/j.marenvres.2010.10.001.
  26. Duursma, E.K., and R. Dawson, eds. 1981. Marine Organic Chemistry: Evolution, Compositions and Chemistry of Organic Matter in Seawater. Elsevier, New York, 521 pp.
  27. Endo, S., M. Yuyama, and H. Takada. 2013. Desorption kinetics of hydrophobic organic contaminants from marine plastic pellets. Marine Pollution Bulletin 74:125–131, https://doi.org/10.1016/j.marpolbul.2013.07.018.
  28. Erickson, M.D. 1997. Analytical Chemistry of PCBs, 2nd ed. CRC Lewis Publishers, Boca Raton, FL, 667 pp.
  29. Farrington, J.W., ed. 1992. Marine Organic Geochemistry: Review and Challenges for the Future. Special Issue of Marine Chemistry 39(1–3):1–242, http://www.sciencedirect.com/science/journal/03044203/39/1-3.
  30. Farrington, J.W. 2014. Organic chemicals of environmental concern: Water sampling and analytical challenges. Oceanography 27(1):214–216, https://doi.org/10.5670/oceanog.2014.24.
  31. Farrington, J.W., E.D. Goldberg, R.W. Risebrough, J.H. Martin, and V.T. Bowen. 1983. US “Mussel Watch” 1976–1978. An overview of the trace metal, DDE, PCB, hydrocarbon and artificial radionuclide data. Environmental Science & Technology 17:490–496, https://doi.org/10.1021/es00114a010.
  32. Field, J.A., C.A. Johnson, and J.B. Rose. 2006a. What is “emerging”? Environmental Science & Technology 40:7,105–7,450, https://doi.org/10.1021/es062982z.
  33. Field, J.A., C.A. Johnson, and J.B. Rose, guest eds. 2006b. Emerging Contaminants Special Issue. Environmental Science & Technology 40(23), http://pubs.acs.org/toc/esthag/40/23.
  34. Fowler, S.W. 1990. Critical review of selected heavy metal and chlorinated hydrocarbons concentrations in the marine environment. Marine Environmental Research 29:1–64, https://doi.org/10.1016/0141-1136(90)90027-L.
  35. Froescheis, O., R. Looser, G.M. Cailliet, W.M. Jarman, and K. Ballschmiter. 2000. The deep sea as a final global sink of semivolatile persistent organic pollutants? Part I: PCBs in surface and deep-sea dwelling fish of the North and South Atlantic and the Monterey Bay Canyon (California). Chemosphere 40:651–660, https://doi.org/10.1016/S0045-6535(99)00461-0.
  36. Goldberg, E.D., ed. 1972. Baseline Studies of Heavy Metal Halogenated Hydrocarbon, and Petroleum Hydrocarbon Pollutants in the Marine Environment and Research Recommendations: The IDOE Baseline Conference, May 24–26, 1972, New York, New York. Deliberations of the International Decade of Ocean Exploration (IDOE) Baseline Conference, May 24–26, 1972. National Science Foundation, Washington, DC, 54 pp.
  37. Goldberg, E.D. 1975. The Mussel Watch: A first step in global marine monitoring. Marine Pollution Bulletin 6(7):111–114, https://doi.org/10.1016/0025-326X(75)90271-4.
  38. Goldberg, E.D., V.T. Bowen, J.W. Farrington, G.R. Harvey, J.H. Martin, P.L. Parker, R.W. Risebrough, W. Robertson, E. Schneider, and E. Gamble. 1978. The Mussel Watch. Environmental Conservation 5:101–125, https://doi.org/10.1017/S0376892900005555.
  39. Gustaffson, Ö., P.M. Gschwend, and K.O. Buesseler. 1997. Settling removal rates of PCBs into the Northwestern Atlantic derived from 238U–234Th disequilibria. Environmental Science & Technology 31:3,544–3,550, https://doi.org/10.1021/es970299u.
  40. Hansell, D.A., and C.A. Carlson. 2002. Biogeochemistry of Dissolved Organic Matter. Academic Press, San Diego, 774 pp.
  41. Hansell, D.A., C.A Carlson, D.J. Repeta, and R. Schlitzer. 2009. Dissolved organic matter in the ocean. A controversy stimulates new insights. Oceanography 22(4):202–211, https://doi.org/10.5670/oceanog.2009.109.
  42. Heskett, M., H. Takada, R. Yamashita, M. Yuyama, M. Itoh, Y. Geok, Y. Ogata, C. Kwan, A. Heckhausen, H.Taylor, and others. 2012. Measurement of persistent organic pollutants (POPs) in plastic resin pellets from remote islands: Toward establishment of background concentrations for International Pellet Watch. Marine Pollution Bulletin 64:445–448, https://doi.org/10.1016/j.marpolbul.2011.11.004.
  43. Hirai, H., H. Takada, Y. Ogata, R. Yamashita, K. Mizukawa, M. Saha, C. Kwan, C. Moore, H. Gray, D. Lauren, and others. 2011. Organic micropollutants in marine plastic debris from the open ocean and remote and urban beaches. Marine Pollution Bulletin 62:1,683–1,692, https://doi.org/10.1016/j.marpolbul.2011.06.004.
  44. Honjo, S., D.W. Spencer, and J.W. Farrington. 1982. Deep advective transport of lithogenic particles in Panama Basin. Science 216:516–518, https://doi.org/10.1126/science.216.4545.516.
  45. Howard, S., R.W. Henry, A. Rhee, M.A. Kappes, D.A. Croll, M. Petreas, and J.-S. Park. 2011. Legacy and contemporary persistent organic pollutants in North Pacific albatross. Environmental Toxicology and Chemistry 30:2,562–2,569, https://doi.org/10.1002/etc.664.
  46. Isobe, T., H. Takada, M. Kanai, S. Tsutsumi, K.O. Isobe, R. Boonyatumanond, and M.P. Zakaria. 2007. Distribution of polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals in South and Southeast Asian Mussels. Environmental Monitoring and Assessment 135:423–440, https://doi.org/10.1007/s10661-007-9661-y.
  47. Iwata, H., S. Tanabe, N. Sakai, and R. Tatsukawa. 1993. Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environmental Science & Technology 27:1,080–1,098, https://doi.org/10.1021/es00043a007.
  48. Jönsson, A., Ö. Gustafsson, J. Axelman, and H. Sundberg. 2003. Global accounting of PCBs in the continental shelf sediments. Environmental Science & Technology 37:245–255, https://doi.org/10.1021/es0201404.
  49. Jurado, E., F.M. Jaward, R. Lohmann, K.C. Jones, R. Simo, and J. Dachs. 2005. Wet deposition of persistent organic pollutants to the global oceans. Environmental Science & Technology 39:2,426–2,435, https://doi.org/10.1021/es048599g.
  50. Jurado, E., R. Lohmann, S. Meijer, K.C. Jones, and J. Dachs. 2004. Latitudinal and seasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls. Environmental Pollution 128:149–162, https://doi.org/10.1016/j.envpol.2003.08.039.
  51. Kaiser, J. 2010. The dirt on ocean garbage patches. Science 328:1,506, https://doi.org/10.1126/science.328.5985.1506.
  52. Kannan, K., J. Falandysz, N. Yamashita, S. Tanabe, and R. Tatsukawa. 1992. Temporal trends of organochlorine concentrations in cod-liver oil from the Southern Baltic proper, 1971–1989. Marine Pollution Bulletin 19:358–363, https://doi.org/10.1016/0025-326X(92)90373-E.
  53. Kimbrough, K.L., W.E. Johnson, G.G. Lauenstein, J.D. Christensen, and D.A. Apeti. 2008. An Assessment of Two Decades of Contaminant Monitoring in the Nation’s Coastal Zone. NOAA Technical Memorandum NOS NCCOS 74, US NOAA, Silver Spring, MD, 105 pp. Available online at: http://ccma.nos.noaa.gov/publications/MWTwoDecades.pdf (accessed January 7, 2014).
  54. Leahy, J.G., and R.R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiology Review 54:305–315.
  55. Lee, C., S.G. Wakeham, and R.H. Benner. 2004. Symposium on new approaches in marine organic biogeochemistry: A tribute to the life and science of John I. Hedges. Marine Chemistry 92:1–3, https://doi.org/10.1016/j.marchem.2004.06.013.
  56. Lee, H.J., and P.L. Wiberg, eds. 2002. Sedimentation processes, DDT, and the Palos Verdes margin. Continental Shelf Research 22:835–1,116, http://www.sciencedirect.com/science/journal/02784343/22/6-7.
  57. Li, Y.F., and R.W. MacDonald. 2005. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: A review. Science of the Total Environment 342:87–106, https://doi.org/10.1016/j.scitotenv.2004.12.027.
  58. Lima, A.L.C., J.W. Farrington, and C.M. Reddy. 2005. Combustion-derived polycyclic aromatic hydrocarbons in the environment: A review. Environmental Forensics 6:109–131, https://doi.org/10.1080/15275920590952739.
  59. Lohmann, R. 2012. Critical review of low-density polyethylene’s partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environmental Science & Technology 46:606–618, https://doi.org/10.1021/es202702y.
  60. Lohmann, R., K. Brevik, J. Dachs, and D. Muir. 2007. Global fate of POPs: Current and future research directions. Environmental Pollution 150:150–165, https://doi.org/10.1016/j.envpol.2007.06.051.
  61. Lohmann, R., R. Gioia, K.C. Jones, L. Nizzetto, C. Temme, Z. Xie, D. Schulz-Bull, I. Hand, E. Morgan, and L. Jantunen. 2009. Organochlorine pesticides and PAHs in the surface water and atmosphere of the North Atlantic and Arctic Ocean. Environmental Science & Technology 43:5,633–5,639, https://doi.org/10.1021/es901229k.
  62. Lohmann, R., E. Jurado, M.E.Q. Pilson, and J. Dachs. 2006. Oceanic deep water formation as a sink for persistent organic pollutants. Geophysical Research Letters 33, L12607, https://doi.org/10.1029/2006GL025953.
  63. Marti, S., J.M. Bayona, and J. Albaiges. 2001. A potential source of organic pollutants into the Northeastern Atlantic: The outflow of the Mediterranean deep-lying waters through the Gibraltar Strait. Environmental Science & Technology 35:2,682–2,689, https://doi.org/10.1021/es000258p.
  64. Mato, Y., H. Takada, H. Kaehiro, C. Ohtake, and T. Kaminuma. 2001. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science & Technology 35:318–324, https://doi.org/10.1021/es0010498.
  65. McDowell-Capuzzo, J., J.W. Farrington, P. Rantamaki, C.H. Clifford, B.A. Lancaster, D.F. Leavitt, and X. Jia. 1989. The relationship between lipid composition and seasonal differences in the distribution of PCBs in Mytilus edulis. Marine Environmental Research 28:259–264, https://doi.org/10.1016/0141-1136(89)90240-7.
  66. Menzies, R., N.S. Quinete, P. Gardinali, and D. Seba. 2013. Baseline occurrence of organochlorine pesticides and other xenobiotics in the marine environment: Caribbean and Pacific collections. Marine Pollution Bulletin 70:289–295, https://doi.org/10.1016/j.marpolbul.2013.03.003.
  67. Mizukawa, K., H. Takada, M. Ito, Y.B. Geok, J. Hosoda, R. Yamashita, M. Saha, S. Susuki, C. Miguez, J. Frias, and others. 2013. Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets. Marine Pollution Bulletin 70:296–302, https://doi.org/10.1016/j.marpolbul.2013.02.008.
  68. Monirith, I., D. Ueno, S. Takahashi, H. Nakata, A. Subramanian, S. Karuppiah, A. Ismael, M. Muchtar, J. Zheng, B.J. Richardson, and others. 2003. Asia-Pacific Mussel Watch: Monitoring contamination of persistent organochlorine compounds in coastal waters of Asian countries. Marine Pollution Bulletin 46:281–300, https://doi.org/10.1016/S0025-326X(02)00400-9.
  69. Moore, C.J., S.L. Moore, M.K. Leecaster, and S.B. Weiberg. 2001. A comparison of plastic and plankton in the North Pacific Central Gyre. Marine Pollution Bulletin 42:1,297–1,300, https://doi.org/10.1016/S0025-326X(01)00114-X.
  70. Morét-Ferguson, S., K. Lavendar Law, G. Proskurowski, E.K. Murphy, E. Peacock, and C.R. Reddy. 2010. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Marine Pollution Bulletin 60:1,873–1,878, https://doi.org/10.1016/j.marpolbul.2010.07.020.
  71. Morgan, E.J., and R. Lohmann. 2008. Detecting air-water and surface-deep water gradients of PCBs using polyethylene passive samplers. Environmental Science & Technology 42:7,248–7,253, https://doi.org/10.1021/es800518g.
  72. Mössner, S., and K. Ballschmiter. 1997. Marine mammals as global pollution indicators for organochlorines. Chemosphere 34:1,285–1,296, https://doi.org/10.1016/S0045-6535(97)00426-8.
  73. Muir, D.C.G., and P.H. Howard. 2006. Are there other persistent organic pollutants? A challenge for environmental chemists. Environmental Science & Technology 40:7,197–7,166, https://doi.org/10.1021/es061677a.
  74. NRC (National Research Council). 1971. Marine Environmental Quality: Suggested Research Programs for Understanding Man’s Effect on the Oceans. National Academies Press, Washington, DC, 107 pp.
  75. NRC. 1975. Assessing Potential Ocean Pollutants. National Academy Press, Washington, DC, 438 pp.
  76. NRC. 1979. Polychlorinated Biphenyls: A Report. National Academies Press, Washington, DC, 182 pp.
  77. NRC. 2008. Tackling Marine Debris in the 21st Century. National Academies Press, Washington, DC, 218 pp.
  78. Ogata, Y., H. Takada, K. Mizukawa, H. Hirai, S. Iwasa, S. Endo, Y. Mako, M. Saha, K. Okuda, A. Nakashima, and others. 2009. International Pellet Watch: Global monitoring of persistent organic pollutants (POPs) in coastal waters. Part 1. Initial phase data on PCBs, DDTs, and HCHs. Marine Pollution Bulletin 58:1,437–1,446, https://doi.org/10.1016/j.marpolbul.2009.06.014.
  79. Peters, A.J., and A.N.S. Siuda, 2014. A review of observations of floating tar in the Sargasso Sea. Oceanography 27(1):217–221, https://doi.org/10.5670/oceanog.2014.25.
  80. Petrick, G., D.E. Schulz-Bull, V. Martens, K. Scholz, and J.C. Duinker. 1996. An in-situ filtration/extraction system for the recovery of trace organics in solution and on particles tested in deep ocean water. Marine Chemistry 54:97–105, https://doi.org/10.1016/0304-4203(96)00029-1.
  81. Pikkarainen, A.-L., and R. Parmanne. 2006. Polychlorinated biphenyls and organochlorine pesticides in Baltic herring 1985–2022. Marine Pollution Bulletin 52:1,304–1,309, https://doi.org/10.1016/j.marpolbul.2006.05.022.
  82. Prest, H., J.N. Huchins, J.D. Petty. S. Hervel, J. Paasivirtas, and P. Heinonen. 1995. A survey of recent results in passive sampling of water and air by semipermeable membrane devices. Marine Pollution Bulletin 31:306–312, https://doi.org/10.1016/0025-326X(95)00146-E.
  83. Puig, P., A. Palanques, and J. Martin. 2014. Contemporary sediment transport processes in submarine canyons. Annual Review of Marine Science 6:53–77, https://doi.org/10.1146/annurev-marine-010213-135037.
  84. Richardson, B.J., G.J. Zheng, E.S.C. Tse, S.B. Abbott-De Luca, S.Y.M. Siu, and P.K.S. Lam. 2003. A comparison of polycyclic aromatic hydrocarbon and petroleum hydrocarbon uptake by mussels (Parna viridis) and semi-permeable membrane devices (SPMD) in Hong Kong coastal waters. Environmental Pollution 122:223–227, https://doi.org/10.1016/S0269-7491(02)00301-9.
  85. Richardson, B.J., C.J. Zheng, E.S.C. Tse, and P.K.S. Lam. 2001. A comparison of mussels (Parna viridis) and semi-permeable membrane devices (SPMD) for monitoring chlorinated trace organic contaminants in Hong Kong coastal waters. Chemosphere 45:1,201–1,208, https://doi.org/10.1016/S0045-6535(00)00535-X.
  86. Rigét, F., A. Bignert, B. Braune, J. Stow, and S. Wilson. 2010. Temporal trends of legacy POPs in Arctic biota, an update. Science of the Total Environment 408:2,874–2,884, https://doi.org/10.1016/j.scitotenv.2009.07.036.
  87. Rios, L.M., P.R. Jones, C. Moore, and U.V. Narayan. 2010. Quantitation of persistent organic pollutants on plastic debris from the Northern Pacific Gyre’s “eastern garbage patch.” Journal of Environmental Monitoring 12:2,226–2,236, https://doi.org/10.1039/c0em00239a.
  88. Ross, P.S., C.M. Couillard, M.G. Ikonomou, S.C. Johannessen, M. LeBeuf, R.W. MacDonald, and G. Tomy. 2009. Large and growing environmental reservoirs of Deca-BDE present an emerging health risk for fish and marine mammals. Marine Pollution Bulletin 58:7–10, https://doi.org/10.1016/j.marpolbul.2008.09.002.
  89. Saha, M., A. Togo, K. Mizukawa, M. Murakami, H. Takada, M.P. Zakaria, N.H. Chiem, D.C. Tuyen, M. Prudente, R. Boonyatumanond, and others. 2009. Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Marine Pollution Bulletin 58: 189-200, https://doi.org/10.1016/j.marpolbul.2008.04.049.
  90. SCEP (Study of Critical Environmental Problems). 1970. Man’s Impact on the Global Environment: Assessment and Recommendations for Action. Report of the Study of Critical Environmental Problems, MIT Press, Cambridge, MA, 319 pp.
  91. Scholin, C., G. Doucette, S. Jensen, B. Roman, D. Pargett, R. Marin III, C. Preston, W. Jones, J. Feldman, C. Everlove, and others. 2009. Remote detection of marine microbes, small invertebrates, harmful algae and biotoxins using the Environmental Sample Processor (ESP). Oceanography 22(2):158–167, https://doi.org/10.5670/oceanog.2009.46.
  92. Schulz, D.E., G. Petrick, and J.C. Duinker. 1988. Chlorinated biphenyls in North Atlantic surface and deep water. Marine Pollution Bulletin 9:526–531, https://doi.org/10.1016/0025-326X(88)90543-7.
  93. Schulz-Bull, D.E., G. Petrick, R. Bruhn, and J.C. Duinker, 1998. Chlorobiphenyls (PCB) and PAHs in water masses of the northern North Atlantic. Marine Chemistry 61:101–114, https://doi.org/10.1016/S0304-4203(98)00010-3.
  94. Schulz-Bull, D.E., G. Petrick, and J.C. Duinker. 1991. Polychlorinated biphenyls in North Sea water. Marine Chemistry 36:365–384, https://doi.org/10.1016/S0304-4203(09)90071-8.
  95. Schulz-Bull, D.E., G. Petrick, N. Kanna, J.C. Duinker. 1995. Distribution of individual chlorobiphenyls (PCB) in solution and suspension in the Baltic Sea. Marine Chemistry 48:245–270, https://doi.org/10.1016/0304-4203(94)00054-H.
  96. Schwarzenbach, R.P., P.M. Gschwend, and D.M. Imbodden. 2003. Environmental Organic Chemistry. Wiley-Interscience, 1,000 pp.
  97. Sericano, J.L., T.L. Wade, T.J. Jackson, J.M. Brooks, B.W. Tripp, J.W. Farrington, L.D. Mee, J.W. Readman, J.-P. Villeneuve, and E.D. Goldberg. 1995. Trace organic contamination in the Americas: An overview of the US National Status & Trends and the International ‘Mussel Watch’ programmes. Marine Pollution Bulletin 31:214–225, https://doi.org/10.1016/0025-326X(95)00197-U.
  98. Stegeman, J.J., P.J. Kloepper-Sams, and J.W. Farrington. 1986. Monoxygenase induction and chlorobiphenyls in deep benthic fish from the Western North Atlantic. Science 231:1,287–1,289, https://doi.org/10.1126/science.231.4743.1287.
  99. Takada, H. 2006. Call for pellets! International Pellet Watch: Global monitoring of POPs using beached plastic resin pellets. Marine Pollution Bulletin 52:1,547–1,548, https://doi.org/10.1016/j.marpolbul.2006.10.010.
  100. Tanabe, S., and A. Submramanian. 2006. Bioindicators of POPs: Monitoring in Developing Countries. Kyoto University Press, Kyoto, Japan, and Trans Pacific Press, Melbourne, Australia, 190 pp.
  101. Tanaka, K., H. Takada, R. Yamashita, K. Mizukawa, M. Fukuwaka, and Y. Watanuki. 2013. Accumulation of plastic derived chemicals in tissue of seabirds ingesting marine plastics. Marine Pollution Bulletin 69:219–222, https://doi.org/10.1016/j.marpolbul.2012.12.010.
  102. Teuten, E.L., J.M. Saquing, D.R.U. Knappe, M.A. Barlaz. S. Jönsson, A. Björn, S.J. Rowland, R.C. Thompson, T.S. Galloway, R. Yamashita, and others. 2009. Transport and release of chemicals from plastics to the environment and wildlife. Philosophical Transactions of the Royal Society B 364:2,027–2,045, https://doi.org/10.1098/rstb.2008.0284.
  103. Theodosi, C., C. Parinos, A. Gogou, A. Kokotos, S. Stavrakakis, V. Lykousis, J. Hatzianestis, and N. Mihalopoulos. 2013. Downward fluxes of elemental carbon, metals and polycyclicaromatic hydrocarbons in settling particles from the deep Ionian Sea (NESTOR site), Eastern Mediterranean. Biogeosciences 10:4,449–4,464, https://doi.org/10.5194/bg-10-4449-2013.
  104. Topping, G. 1983. Guidelines for the Use of Biological Material in First Order Pollution Assessment and Trend Monitoring. Department of Agriculture and Fisheries for Scotland, Scottish Fisheries Research Report Number 28, Marine Laboratory, DAFF, Scotland, 28 pp. Available online at: http://www.scotland.gov.uk/Uploads/Documents/No 28.pdf (accessed January 7, 2014).
  105. UNEP (United Nations Environment Programme). 1984. Prospects for Global Ocean Pollution Monitoring. UNEP Regional Seas Reports and Studies No. 47, 53 pp. Available online at: http://www.unep.org/regionalseas/publications/reports/RSRS/pdfs/rsrs047.pdf (accessed January 7, 2014).
  106. United Nations. 2013a. Declaration of the United Nations Conference on the Human Environment. June 1972. Available online at: http://www.unep.org/Documents.Multilingual/Default.asp?documentid=97&articleid=1503 (accessed November 10, 2013).
  107. United Nations. 2013b. Stockholm Convention on Persistent Organic Pollutants (POPs). Available online at: http://chm.pops.int (accessed November 10, 2013).
  108. Villeneuve, J.-P., F.P. Carvalho, S.W. Fowler, and C. Cattini. 1999. Levels and trends of PCBs, chlorinated pesticides and petroleum hydrocarbons in mussels from the NW Mediterranean coast: Comparison of concentrations in 1973/1974 and 1988/1989. The Science of the Total Environment 237–238:57–65, https://doi.org/10.1016/S0048-9697(99)00124-2.
  109. Venrick, E.L., T.W. Backman, W.C. Bartram, C.J. Platt, M.S. Thornhill, and R.E. Yeats. 1973. Man-made objects on the surface of the Central North Pacific Ocean. Nature 241:271, https://doi.org/10.1038/241271a0.
  110. Witt, G. 2002. Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Marine Chemistry 79:49–66, https://doi.org/10.1016/S0304-4203(02)00035-X.
  111. WHO (World Health Organization). 1976. Polychlorinated biphenyls and terphenyls. Environmental Health Criteria 2. World Health Organization, Geneva, 85 pp.
  112. WHO. 1979. DDT and its derivatives. Environmental Health Criteria 9. World Health Organization, Geneva, 194 pp.
  113. Widdows, J., D.K. Phelps, and W. Galloway. 1981. Measurement of physiologic condition of mussels transplanted along a pollution gradient in Narragansett Bay. Marine Environmental Research 4:181–194, https://doi.org/10.1016/0141-1136(81)90033-7.
  114. Yamashita, R., H. Takada, M. Murakima, M. Fukuwaka, and Y. Watanuki. 2007. Evaluation of non-invasive approach for monitoring PCB pollution of seabirds using preen gland oil. Environmental Science & Technology 41:4,901–4,906, https://doi.org/10.1021/es0701863.
  115. Zettler, E.R., T.J. Mincer, and L.A. Amaral-Zettler. 2013. Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environmental Science & Technology 47:7,137–7,146, https://doi.org/10.1021/es401288x.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.