Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 04

View Issue TOC
Volume 29, No. 4
Pages 130 - 143


Ocean-Ice Shelf Interaction in East Antarctica

By Alessandro Silvano , Stephen R. Rintoul, and Laura Herraiz-Borreguero 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Assessments of the Antarctic contribution to future sea level rise have generally focused on ice loss in West Antarctica. This focus was motivated by glaciological and oceanographic observations that showed ocean warming was driving loss of ice mass from the West Antarctic Ice Sheet (WAIS). Paleoclimate studies confirmed that ice discharge from West Antarctica contributed several meters to sea level during past warm periods. On the other hand, the much larger East Antarctic Ice Sheet (EAIS) was generally considered to be relatively stable because of being largely grounded above sea level and therefore protected from ocean heat flux. However, recent studies suggest that a large part of the EAIS is grounded well below sea level and that the EAIS also retreated and contributed several meters to sea level rise during past warm periods. We use ocean observations from three ice shelf systems to illustrate the variety of ocean-ice shelf interactions taking place in East Antarctica and to discuss the potential vulnerability of East Antarctic ice shelves to ocean heat flux. The Amery and the Mertz are “cold cavity” ice shelves that exhibit relatively low area-averaged basal melt rates, although substantial melting and refreezing occurs beneath the large and deep Amery Ice Shelf. In contrast, new oceanographic measurements near the Totten Ice Shelf show that warm water enters the sub-ice-shelf cavity and drives rapid basal melting, as is seen in West Antarctica. Totten Glacier is of particular interest because it holds a marine-based ice volume equivalent to at least 3.5 m of global sea level rise, an amount comparable to the entire marine-based WAIS, and recent glaciological measurements show the grounded portion of Totten Glacier is thinning and the grounding line is retreating. Multiple lines of evidence support the hypothesis that parts of the EAIS are more dynamic than once thought. Given that the EAIS contains a volume of marine-based ice equivalent to 19 m of global sea level rise, the potential for ocean-driven melt to destabilize the marine-based ice sheet needs to be accounted for in assessments of future sea level rise.


Silvano, A., S.R. Rintoul, and L. Herraiz-Borreguero. 2016. Ocean-ice shelf interaction in East Antarctica. Oceanography 29(4):130–143, https://doi.org/10.5670/oceanog.2016.105.


Aitken, A.R.A., J.L. Roberts, T.D. van Ommen, D.A. Young, N.R. Golledge, J.S. Greenbaum, D.D. Blankenship, and M.J. Siegert. 2016. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533(7603):385–389, https://doi.org/10.1038/nature17447.

Allison, I. 1979. The mass budget of the Lambert Glacier drainage basin, Antarctica. Journal of Glaciology 22(87):223–235.

Arndt, J.E., H.W. Schenke, M. Jakobsson, F.O. Nitsche, G. Buys, B. Goleby, M. Rebesco, F. Bohoyo, J. Hong, J. Black, and others. 2013. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0: A new bathymetric compilation covering circum-Antarctic waters. Geophysical Research Letters 40:3,111–3,117, https://doi.org/10.1002/grl.50413.

Arzeno, I.B., R.C. Beardsley, R. Limeburner, B. Owens, L. Padman, S.R. Springer, C.L. Stewart, and M.J.M. Williams. 2014. Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. Journal of Geophysical Research Oceans 119:4,214–4,233, https://doi.org/10.1002/2014JC009792.

Bindoff, N.L., M.A. Rosenberg, and M.J. Warner. 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep Sea Research Part II 47(12–13):2,299–2,326, https://doi.org/​10.1016/S0967-0645(00)00038-2.

Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, and others. 2013. Sea level change. Pp. 1,137–1,216 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, UK, and New York, NY, https://doi.org/10.1017/CBO9781107415324.026.

Cook, C.P., T. van de Flierdt, T. Williams, S.R. Hemming, M. Iwai, M. Kobayashi, F.J. Jimenez-Espejo, C. Escutia, J.J. González, B.K. Khim, and others. 2013. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nature Geoscience 6(9):765–769, https://doi.org/10.1038/ngeo1889.

Cougnon, E.A., B.K. Galton-Fenzi, A.J.S. Meijers, and B. Legrésy. 2013. Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992–2007). Journal of Geophysical Research 118:5,858–5,872, https://doi.org/10.1002/2013JC008790.

Couldrey, M.P., L. Jullion, A.C. Naveira Garabato, C. Rye, L. Herráiz-Borreguero, P.J. Brown, M.P. Meredith, and K.L. Speer. 2013. Remotely induced warming of Antarctic Bottom Water in the eastern Weddell gyre. Geophysical Research Letters 40:2,755–2,760, https://doi.org/10.1002/grl.50526

Craven, M., I. Allison, H.A. Fricker, and R. Warner. 2009. Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica. Journal of Glaciology 55(192):717–728, https://doi.org/​10.3189/002214309789470941.

DeConto, R.M., and D. Pollard. 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531(7596):591–597, https://doi.org/10.1038/nature17145.

Depoorter, M.A., J.L. Bamber, J.A. Griggs, J.T.M. Lenaerts, S.R.M. Ligtenberg, M.R. van den Broeke, and G. Moholdt. 2013. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502(7469):89–92, https://doi.org/10.1038/nature12567.

Dowdeswell, J.A. 2006. The Greenland ice sheet and global sea-level rise. Science 311:963–964, https://doi.org/10.1126/science.1124190.

Dupont, T.K., and R.B. Alley. 2005. Assessment of the importance of ice-shelf buttressing to ice-sheet flows. Geophysical Research Letters 32, L04503, https://doi.org/10.1029/2004GL022024

Dutrieux, P., J. De Rydt, A. Jenkins, P.R. Holland, H.K. Ha, S.H. Lee, E.J. Steig, Q. Ding, E.P. Abrahamsen, and M. Schroder. 2014. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343(6167):174–178, https://doi.org/10.1126/science.1244341.

Dutton, A., A.E. Carlson, A.J. Long, G.A. Milne, P.U. Clark, R. DeConto, B.P. Horton, S. Rahmstorf, and M.E. Raymo. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349(6244), https://doi.org/10.1126/science.aaa4019.

Favier, L., G. Durand, S.L. Cornford, G.H. Gudmundsson, O. Gagliardini, F. Gillet-Chaulet, T. Zwinger, A.J. Payne, and A.M. Le Brocq. 2014. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Climate Change 4(2):117–121, https://doi.org/10.1038/nclimate2094

Ferraccioli, F., E. Armadillo, T. Jordan, E. Bozzo, and H. Corr. 2009. Aeromagnetic exploration over the East Antarctic Ice Sheet: A new view of the Wilkes Subglacial Basin. Tectonophysics 478(1–2):62–77, https://doi.org/10.1016/j.tecto.2009.03.013

Flament, T., and F. Remy. 2012. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. Journal of Glaciology 58(211):830–840, https://doi.org/10.3189/2012JoG11J118.

Foldvik, A., and T. Kvinge. 1974. Conditional instability of sea water at the freezing point. Deep Sea Research and Oceanographic Abstracts 21(3):169–174, https://doi.org/10.1016/​0011-7471(74)90056-4.

Foster, T.D. 1995. Abyssal water mass formation off the eastern Wilkes Land coast of Antarctica. Deep Sea Research Part I 42(4):501–522, https://doi.org/​10.1016/0967-0637(95)00002-N.

Fretwell, P., H.D. Pritchard, D.G. Vaughan, J.L. Bamber, N.E. Barrand, R. Bell, C. Bianchi, R.G. Bingham, D.D. Blankenship, G. Casassa, and others. 2013. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7(1):375–393, https://doi.org/​10.5194/tc-7-375-2013

Fricker, H.A., S. Popov, I. Allison, and N. Young. 2001. Distribution of marine ice beneath the Amery Ice Shelf. Geophysical Research Letters 28(11):2,241–2,244, https://doi.org/​10.1029/2000GL012461.

Fricker, H.A., R.C. Warner, and I. Allison. 2000. Mass balance of the Lambert Glacier-Amery Ice Shelf system, East Antarctica: A comparison of computed balance fluxes and measured fluxes. Journal of Glaciology 46(155):561–570, https://doi.org/10.3189/172756500781832765.

Golledge, N.R., D.E. Kowalewski, T.R. Naish, R.H. Levy, C.J. Fogwill, and E.G.W. Gasson. 2015. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526(7573):421–425, https://doi.org/​10.1038/nature15706

Gordon, A.L., and P.L. Tchernia. 1972. Waters of the continental margin off Adélie coast, Antarctica. Pp. 59–69 in Antarctic Oceanolgy II: The Australian-New Zealand Sector. Antarctic Research Series, vol. 19, D.E. Hayes, ed., American Geophysical Union, Washington, D.C.

Greenbaum, J.S., D.D. Blankenship, D.A. Young, T.G. Richter, J.L. Roberts, A.R.A. Aitken, B. Legresy, D.M. Schroeder, R.C. Warner, T.D. van Ommen, and M.J. Siegert. 2015. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nature Geoscience 8(4):294–298, https://doi.org/10.1038/ngeo2388

Harig, C., and F.J. Simons. 2015. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth and Planetary Science Letters 415:134–141, https://doi.org/10.1016/​j.epsl.2015.01.029.

Hattermann, T., O.A. Nøst, J.M. Lilly, and L.H. Smedsrud. 2012. Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophysical Research Letters 39, L12605, https://doi.org/10.1029/2012GL051012.

Herraiz-Borreguero, L., I. Allison, M. Craven, K.W. Nicholls, and M.A. Rosenberg. 2013. Ice shelf/ocean interactions under the Amery Ice Shelf: Seasonal variability and its effect on marine ice formation. Journal of Geophysical Research Oceans 118:7,117–7,131, https://doi.org/​10.1002/2013JC009158

Herraiz-Borreguero, L., J.A. Church, I. Allison, B. Pena-Molino, R. Coleman, M. Tomczak, and M. Craven. 2016a. Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica. Journal of Geophysical Research Oceans 121:4,946–4,965, https://doi.org/​10.1002/2016JC011858.

Herraiz-Borreguero, L., R. Coleman,
 I. Allison, S.R. Rintoul, M. Craven, and G.D. Williams. 2015. Circulation of modified Circumpolar Deep Water and basal melt beneath the Amery Ice Shelf, East Antarctica. Journal of Geophysical Research Oceans 120:3,098–3,112, https://doi.org/​10.1002/2015JC010697

Herraiz-Borreguero, L., D. Lannuzel, P. van der Merwe, A. Treverrow, and J.B. Pedro. 2016b. Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica. Journal of Geophysical Research Oceans 121:6,009–6,020, https://doi.org/10.1002/2016JC011687.

Images of Antarctic Ice Shelves. 2014. Mertz Glacier, 12/02/2014. National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.7265/N5NC5Z4N.

Jacobs, S.S., H.H. Hellmer, C.S.M. Doake, A. Jenkins, and R.M. Frolich. 1992. Melting of ice shelves and the mass balance of Antarctica. Journal of Glaciology 38(130):375–387.

Jacobs, S.S., A. Jenkins, C.F. Giulivi, and P. Dutrieux. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience 4(8):519–523, https://doi.org/10.1038/ngeo1188.

Jamieson, S.S.R., N. Ross, J.S. Greenbaum, D.A. Young, A.R.A. Aitken, J.L. Roberts, D.D. Blankenship, S. Bo, and M.J. Siegert. 2016. An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica. Geology 44(2):87–90, https://doi.org/10.1130/G37220.1.

Jenkins, A. 1999. The impact of melting ice on ocean waters. Journal of Physical Oceanography 29:2,370–2,381, https://doi.org/10.1175/1520-0485(1999)029​<2370:TIOMIO>2.0.CO;2

Jenkins, A., P. Dutrieux, S.S. Jacobs, S.D. McPhail, J.R. Perrett, A.T. Webb, and D. White. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geoscience 3(7):468–472, https://doi.org/10.1038/ngeo890.

Jenkins, A., and S.S. Jacobs. 2008. Circulation and melting beneath George VI ice shelf, Antarctica. Journal of Geophysical Research 113, C04013, https://doi.org/10.1029/2007JC004449

Joughin, I., and R.B. Alley. 2011. Stability of the West Antarctic ice sheet in a warming world. Nature Geoscience 4(8):506–513, https://doi.org/10.1038/ngeo1194.

Joughin, I., and L. Padman. 2003. Melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophysical Research Letters 30, 1477, https://doi.org/10.1029/2003GL016941.

Joughin, I., B.E. Smith, and B. Medley. 2014. Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin, West Antarctica. Science 344(6185):735–738, https://doi.org/10.1126/science.1249055.

Khazendar, A., E. Rignot, and E. Larour. 2009. Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf. Journal of Geophysical Research 114, F04007, https://doi.org/10.1029/2008JF001124

Kulessa, B., D. Jansen, A.J. Luckman, E.C. King, and P.R. Sammonds. 2014. Marine ice regulates the future stability of a large Antarctic ice shelf. Nature Communications 5, 3707, https://doi.org/10.1038/ncomms4707.

Lacarra, M., M.N. Houssais, E. Sultan, S.R. Rintoul, and C. Herbaut. 2011. Summer hydrography on the shelf off Terre Adélie/George V Land based on the ALBION and CEAMARC observations during the IPY. Polar Science:5:88–103, https://doi.org/10.1016/j.polar.2011.04.008.

Li, X., E. Rignot, M. Morlighem, J. Mouginot, and B. Scheuchl. 2015. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophysical Research Letters 42:8,049–8,056, https://doi.org/​10.1002/2015GL065701.

Li, X., E. Rignot, J. Mouginot, and B. Scheuchl. 2016. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015. Geophysical Research Letters 43:6,366–6,373, https://doi.org/​10.1002/2016GL069173.

Liu, Y., J.C. Moore, X. Cheng, R.M. Gladstone, J.N. Bassis, H. Liu, J. Wen, and F. Hui. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proceedings of the National Academy of Sciences of the United States of America 112:3,263–3,268, https://doi.org/10.1073/pnas.1415137112.

Makinson, K., and K.W. Nicholls. 1999. Modeling tidal currents beneath Filchner-Ronne Ice Shelf and on the adjacent continental shelf: Their effect on mixing and transport. Journal of Geophysical Research 104(C6):13,449–13,465, https://doi.org/​10.1029/1999JC900008.

Mazloff, M.R., P. Heimbach, and C. Wunsch. 2010. An eddy-permitting Southern Ocean State Estimate. Journal of Physical Oceanography 40:880–899, https://doi.org/10.1175/2009JPO4236.1.

Mengel, M., and A. Levermann. 2014. Ice plug prevents irreversible discharge from East Antarctica. Nature Climate Change 4:451–455, https://doi.org/​10.1038/nclimate2226

Naish, T., R. Powell, R. Levy, G. Wilson, R. Scherer, F. Talarico, L. Krissek, F. Niessen, M. Pompillo, T. Wilson, and others. 2009. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–328, https://doi.org/10.1038/nature07867

Nihashi, S., and K.I. Ohshima. 2015. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. Journal of Climate 28(9):3,650–3,670, https://doi.org/10.1175/JCLI-D-14-00369.1.

Ohshima, K.I., Y. Fukamachi, G.D. Williams, S. Nihashi, F. Roquet, Y. Kitade, T. Tamura, D. Hirano, L. Herraiz-Borreguero, I. Field, and others. 2013. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geoscience 6(3):235–240, https://doi.org/10.1038/ngeo1738.

Orsi, A.H., T. Whitworth III, and W.D. Nowlin Jr. 1995. On the meridional extent and fronts of the Antarctic circumpolar current. Deep Sea Research Part I 42(5):641–673.

Paolo, F.S., H.A. Fricker, and L. Padman. 2015. Volume loss from Antarctic ice shelves is accelerating. Science 348(6232):327–331, https://doi.org/10.1126/science.aaa0940

Passchier, S. 2011. Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high-resolution record of ice-rafted debris off Prydz Bay, East Antarctica. Paleoceanography 26, PA4204, https://doi.org/​10.1029/2010PA002061.

Patterson, M.O., R. McKay, T. Naish, C. Escutia, F.J. Jimenez-Espejo, M.E. Raymo, S.R. Meyers, L. Tauxe, H. Brinkhuis, and others. 2014. Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene. Nature Geoscience 7(11):841–847, https://doi.org/10.1038/ngeo2273

Picard, G., and M. Fily. 2006. Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours. Remote Sensing Environment 104(3):325–336, https://doi.org/​10.1016/j.rse.2006.05.010

Pollard, D., and R.M. DeConto. 2009. Modelling West Antarctica ice sheet growth and collapse through the past five million years. Nature 458:329–332, https://doi.org/10.1038/nature07809.

Pollard, D., R.M. DeConto, and R.B. Alley. 2015. Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters 412:112–121, https://doi.org/10.1016/j.epsl.2014.12.035.

Pritchard, H.D., R.J. Arthern, D.G. Vaughan, and L.A. Edwards. 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7266):971–975, https://doi.org/10.1038/nature08471

Pritchard, H.D., S.R.M. Ligtenberg, H.A. Fricker, D.G. Vaughan, M.R. van den Broeke, and L. Padman. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484(7395):502–505, https://doi.org/10.1038/nature10968.

Rignot, E. 2002. Mass balance of East Antarctic glaciers and ice shelves from satellite data. Annals of Glaciology 34(1):217–227, https://doi.org/​10.3189/172756402781817419.

Rignot, E., J.L. Bamber, M.R. van den Broeke, C. Davis, Y. Li, W.J. van de Berg, and E. van Meijgaard. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1:106–110, https://doi.org/10.1038/ngeo102

Rignot, E., and S.S. Jacobs. 2002. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296(5575):2,020–2,023, https://doi.org/10.1126/science.1070942.

Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl. 2013. Ice-shelf melting around Antarctica. Science 341(6143):266–270, https://doi.org/10.1126/science.1235798.

Rignot, E., J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl. 2 014. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters 41:3,502–3,509, https://doi.org/10.1002/2014GL060140.

Rignot, E., I. Velicogna, M.R. van den Broeke, A. Monaghan, and J.T.M. Lenaerts. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38, L05503, https://doi.org/10.1029/2011GL046583

Rintoul, S.R. 1998. On the origin and influence of Adélie Land Bottom Water. Pp. 151–171 in Ocean, Ice, Atmosphere: Interactions at the Antarctic Continental Margin. Antarctic Research Series, vol. 75, S.S. Jacobs and R.F. Weiss, eds, American Geophysical Union, Washington, D.C.

Rintoul, S.R., A. Silvano, B. Pena-Molino, E. van Wijk, M.A. Rosenberg, J.S. Greenbaum, and D.D. Blankenship. 2016. Ocean heat drives rapid basal melt of Totten Ice Shelf. Science Advances

Roberts, J.L., R.C. Warner, D. Young, A. Wright, T.D. van Ommen, D.D. Blankenship, M. Siegert, N.W. Young, I.E. Tabacco, A. Forieri, and others. 2011. Refined broad-scale sub-glacial morphology of Aurora Subglacial Basin, East Antarctica derived by an ice-dynamics-based interpolation scheme. The Cryosphere 5:551–560, https://doi.org/10.5194/tc-5-551-2011

Scambos, T., J. Bohlander, and B. Raup. 1996a. Images of Antarctic Ice Shelves. [Totten Ice Shelf, 1/22/2015]. National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.7265/N5NC5Z4N.

Scambos, T., J. Bohlander, and B. Raup. 1996b. Images of Antarctic Ice Shelves. [Mertz Glacier, 12/02/2014]. National Snow and Ice Data Center, Boulder, Colorado USA, https:/doi.org/10.7265/N5NC5Z4N.

Scherer, R.P. 1991. Quaternary and Tertiary microfossils from beneath Ice Stream B: Evidence for a dynamic West Antarctic ice sheet history. Global and Planetary Change 4(4):395–412.

Schoof, C. 2007. Ice sheet grounding line dynamics: Steady states, stability and hysteresis. Journal of Geophysical Research 112, F03S28, https://doi.org/10.1029/2006JF000664

Shadwick, E.H., S.R. Rintoul, B. Tilbrook, G.D. Williams, N. Young, A.D. Fraser, H. Marchant, J. Smith, and T. Tamura. 2013. Glacier tongue calving reduced dense water formation and enhanced carbon uptake. Geophysical Research Letters 40:904–909, https://doi.org/10.1002/grl.50178.

Shepherd, A., D. Wingham, and E. Rignot. 2004. Warm ocean is eroding West Antarctic Ice Sheet. Geophysical Research Letters 31, L23402, https://doi.org/10.1029/2004GL021106.

Snow, K., B.M. Sloyan, S.R. Rintoul, A.M. Hogg, and S.M. Downes. 2016. Controls on circulation, cross-shelf exchange, and dense water formation in an Antarctic polynya. Geophysical Research Letters 43:7,089–7,096, https://doi.org/10.1002/2016GL069479.

Stern, A.A., M.S. Dinniman, V. Zagorodnov, S.W. Tyler, and D.M. Holland. 2013. Intrusion of warm surface water beneath the McMurdo Ice Shelf, Antarctica. Journal of Geophysical Research Oceans 118:7,036–7,048, https://doi.org/10.1002/2013JC008842.

Tamura, T., K.I. Ohshima, A.D. Fraser, and G.D. Williams. 2016. Sea ice production variability in Antarctic coastal polynyas. Journal of Geophysical Research Oceans 121:2,967–2,979, https://doi.org/10.1002/2015JC011537.

Velicogna, I., and J. Wahr. 2013. Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophysical Research Letters 40:3,055–3,063, https://doi.org/10.1002/grl.50527.

Weertman, J. 1974. Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology 13(67):3–11. 

Wen, J., Y. Wang, W. Wang, K.C. Jezek, H. Liu, and I. Allison. 2010. Basal melting and freezing under the Amery Ice Shelf, East Antarctica. Journal of Glaciology 56(195):81–90, https://doi.org/10.3189/002214310791190820.

Williams, G.D., S. Aoki, S.S. Jacobs, S.R. Rintoul, T. Tamura, and N.L. Bindoff. 2010a. Antarctic Bottom Water from the Adélie and George V Land coast, East Antarctica (140–149°E). Journal of Geophysical Research 115, C04027, https://doi.org/10.1029/2009JC005812

Williams, G.D., L. Herraiz-Borreguero, F. Roquet, T. Tamura, K.I. Ohshima, Y. Fukamachi, A.D. Fraser, L. Gao, H. Chen, C.R. McMahon, and others. 2016. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nature Communications 7,12577, https://doi.org/​10.1038/ncomms12577.

Williams, G.D., A.J.S. Meijers, A. Poole, P. Mathiot, T. Tamura, and A. Klocker. 2011. Late winter oceanography off the Sabrina and BANZARE coast (117–128°E), East Antarctica. Deep Sea Research Part II 58(9–10):1,194–1,210, https://doi.org/10.1016/​j.dsr2.2010.10.035

Williams, T., T. van de Flierdt, S.R. Hemming, E. Chung, M. Roy, and S.L. Goldstein. 2010b. Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth and Planetary Science Letters 290(3–4):351–361, https://doi.org/10.1016/​j.epsl.2009.12.031.

Worthington, L.V. 1981. The water masses of the world ocean: Some results of a fine-scale census. Pp. 42–69 in Evolution of Physical Oceanography. B.A. Warren and C. Wunsch, eds, MIT Press, Cambridge, MA.

Wouters, B., A. Martin-Español, V. Helm, T. Flament, J.M. van Wessem, S.R.M. Ligtenberg, M.R. van den Broeke, and J.L. Bamber. 2015. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348(6237):899–903, https://doi.org/​10.1126/science.aaa5727.

Young, D.A., A.P. Wright, J.L. Roberts, R.C. Warner, N.W. Young, J.S. Greenbaum, D.M. Schroeder, J.M. Holt, D.E. Sugden, D.D. Blankenship, and others. 2011. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature 474(7349):72–75, https://doi.org/10.1038/nature10114.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.