Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 01

View Issue TOC
Volume 27, No. 1
Pages 26 - 35

OpenAccess

Ocean (De)oxygenation Across the Last Deglaciation: Insights for the Future

By Samuel L. Jaccard , Eric D. Galbraith , Thomas L. Frölicher, and Nicolas Gruber 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Anthropogenic warming is expected to drive oxygen out of the ocean as the water temperature rises and the rate of exchange between subsurface waters and the atmosphere slows due to enhanced upper ocean density stratification. Observations from recent decades are tantalizingly consistent with this prediction, though these changes remain subtle in the face of natural variability. Earth system model projections unanimously predict a long-term decrease in the global ocean oxygen inventory, but show regional discrepancies, particularly in the most oxygen-depleted waters, owing to the complex interplay between oxygen supply pathways and oxygen consumption. The geological record provides an orthogonal perspective, showing how the oceanic oxygen content varied in response to prior episodes of climate change. These past changes were much slower than the current, anthropogenic change, but can help to appraise sensitivities, and point toward potentially dominant mechanisms of change. Consistent with the model projections, marine sediments recorded an overall expansion of low-oxygen waters in the upper ocean as it warmed at the end of the last ice age. This expansion was not linearly related with temperature, though, but reached a deoxygenation extreme midway through the warming. Meanwhile, the deep ocean became better oxygenated, opposite the general expectation. These observations require that significant changes in apparent oxygen utilization occurred, suggesting that they will also be important in the future.

Citation

Jaccard, S.L., E.D. Galbraith, T.L. Frölicher, and N. Gruber. 2014. Ocean (de)oxygenation across the last deglaciation: Insights for the future. Oceanography 27(1):26–35, https://doi.org/10.5670/oceanog.2014.05.

References
    Adkins, J.F. 2013. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28:539–561, https://doi.org/10.1002/palo.20046.
  1. Adkins, J.F., K. McIntyre, and D.P. Schrag. 2002. The salinity, temperature, and and δ¹⁸O of the glacial deep ocean. Science 298:1,769–1,773, https://doi.org/10.1126/science.1076252.
  2. Bianchi, D., J.P. Dunne, J.L. Sarmiento, and E.D. Galbraith. 2012. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2. Global Biogeochemical Cycles 26, GB2009, https://doi.org/10.1029/2011GB004209.
  3. Bopp, L., L. Resplandy, J.C. Orr, S.C. Doney, J.P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, and others. 2013. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10:3,627–3,676, https://doi.org/10.5194/bgd-10-3627-2013.
  4. Boyle, E.A. 1988. Vertical oceanic nutrient fractionation and glacial/interglacial CO₂ cycle. Nature 331:55–56, https://doi.org/10.1038/331055a0.
  5. Bradtmiller, L.I., R.F. Anderson, J.P. Sachs, and M.Q. Fleisher. 2010. A deeper respired carbon pool in the glacial equatorial Pacific Ocean. Earth and Planetary Science Letters 299:417–425, https://doi.org/10.1016/j.epsl.2010.09.022.
  6. Cartapanis, O., K. Tachikawa, and E. Bard. 2012. Latitudinal variations in intermediate depth ventilation and biological production over northeastern Pacific Oxygen Minimum Zones during the last 60 ka. Quaternary Science Reviews 53:24–38, https://doi.org/10.1016/j.quascirev.2012.08.009.
  7. Cocco, V., F. Joos, M. Steinacher, T.L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, and others. 2012. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences Discussions 10:1,849–1,868, https://doi.org/10.5194/bgd-9-10785-2012.
  8. Corliss, B. 1985. Microhabitat of benthic foraminifera within deep-sea sediments. Nature 314:435–438, https://doi.org/10.1038/314435a0.
  9. Crusius, J., T.F. Pedersen, S.S. Kienast, L. Keigwin, and L.D. Labeyrie. 2004. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling-Allerød interval (14.7–12.9 ka). Geology 32:633–636, https://doi.org/10.1130/G20508.1.
  10. Davies, M.H., A.C. Mix, J.S. Stoner, J.A. Addison, J. Jaeger, B. Finney, and J. Wiest. 2011. The deglacial transition on the southeastern Alaska Margin: Meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223, https://doi.org/10.1029/2010PA002051.
  11. Dunne, J.P., J.G. John, E. Shevliakova, R.J. Stouffer, J.P. Krasting, S.I. Malyshev, P.C.D. Milly, L.T. Sentman, A.J. Adcroft, W. Cooke, and others. 2012. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon system formulation and baseline simulation characteristics. Journal of Climate 25:6,646–6,665, https://doi.org/10.1175/JCLI-D-12-00150.1.
  12. Freing, A., D.W.R. Wallace, and H.W. Bange. 2012. Global oceanic production of nitrous oxide. Philosophical Transactions of the Royal Society of London B 367:1,245–1,255, https://doi.org/10.1098/rstb.2011.0360.
  13. Frölicher, T.L., F. Joos, G.-K. Plattner, M. Steinacher, and S.C. Doney. 2009. Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble. Global Biogeochemical Cycles 23, GB1003, https://doi.org/10.1029/2008GB003316.
  14. Galbraith, E.D., S.L. Jaccard, T.F. Pedersen, D.M. Sigman, G.H. Haug, M. Cook, J.R. Southon, and R. François. 2007. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449:890-894, https://doi.org/10.1038/nature06227.
  15. Galbraith, E.D., M. Kienast, and the NICOPP working group members. 2013. The acceleration of oceanic denitrification during deglacial warming. Nature Geoscience 6:579–584, https://doi.org/10.1038/ngeo1832.
  16. Galbraith, E.D., M. Kienast, T.F. Pedersen, and S.E. Calvert. 2004. Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude
    supply to the global thermocline. Paleoceanography 19, PA4007, https://doi.org/10.1029/2003PA001000.
  17. Ganeshram, R.S., T.F. Pedersen, S.E. Calvert, G.W. McNeill, and M.R. Fontugne. 2000. Glacial-interglacial variability in denitrification in the world’s oceans: Causes and consequences. Paleoceanography 15:361–376, https://doi.org/10.1029/1999PA000422.
  18. Garcia, H.E., R.A. Locarnini, T.P. Boyer, J.I. Antonov, O.K. Baranova, M.M. Zweng, and D.R. Johnson. 2010. Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. Government Printing Office, Washington, DC, 344 pp.
  19. Gnanadesikan, A., J.P. Dunne, and J.G. John. 2012. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth system model. Biogeosciences 9:1,152–1,172, https://doi.org/10.5194/bg-9-1159-2012.
  20. Gruber, N. 2004. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. Pp. 1–48 in Carbon-Climate Interactions. M.J. Follows and T. Oguz, eds, John Wiley & Sons.
  21. Gruber, N., M. Gloor, S.-M. Fan, and J.L. Sarmiento. 2001. Air-sea flux of oxygen estimated from bulk data: Implications for the marine and atmospheric oxygen cycles. Global Biogeochemical Cycles 15:783–803, https://doi.org/10.1029/2000GB001302.
  22. Hirsch, A.I., A.M. Michalak, L.M. Bruhwiler, W. Peters, E.J. Dlugokencky, and P.P. Tans. 2006. Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001. Global Biogeochemical Cycles 20, GB1008, https://doi.org/10.1029/2004GB002443.
  23. Ito, T., J. Marshall, and M.J. Follows. 2004. What controls the uptake of transient tracers in the Southern Ocean? Global Biogeochemical Cycles 18, GB2021, https://doi.org/10.1029/2003GB002103.
  24. Jaccard, S.L., and E.D. Galbraith. 2012. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geoscience 5:151–156, https://doi.org/10.1038/ngeo1352.
  25. Jaccard, S.L., and E.D. Galbraith. 2013. Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation. Geophysical Research Letters 40:199–203, https://doi.org/10.1029/2012GL054118.
  26. Jaccard, S.L., E.D. Galbraith, D.M. Sigman, G.H. Haug, R. François, T.F. Pedersen, P. Dulski, and H.R. Thierstein. 2009. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth and Planetary Science Letters 277:156–165, https://doi.org/10.1016/j.epsl.2008.10.017.
  27. Karstensen, J., L. Stramma, and M. Visbeck. 2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific. Progress in Oceanography 77:331–350, https://doi.org/10.1016/j.pocean.2007.05.009.
  28. Keeling, R.F., and M. Visbeck. 2011. On the linkage between Antarctic surface water stratification and global deep-water temperature. Journal of Climate 24:3,545–3,557, https://doi.org/10.1175/2011JCLI3642.1.
  29. Keeling, R.F., A. Körtzinger, and N. Gruber. 2010. Ocean deoxygenation in a warming world. Annual Review of Marine Science 2:199–229, https://doi.org/10.1146/annurev.marine.010908.163855.
  30. Kohfeld, K.E., and Z. Chase. 2011. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean. Quaternary Science Reviews 30:3,350–3,363, https://doi.org/10.1016/j.quascirev.2011.08.007.
  31. Kohfeld, K., C. Le Quéré, S.P. Harrison, and R.F. Anderson. 2005. Role of marine biology in glacial-interglacial CO2 cycles. Science 308:74–78, https://doi.org/10.1126/science.1105375.
  32. Luyten, J.R., J. Pedlosky, and H. Stommel. 1983. The ventilated thermocline. Journal of Physical Oceanography 13:292–309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.
  33. Mangini, A., M. Jung, and S. Laukenmann. 2001. What do we learn from peaks of uranium and of manganese in deep sea sediments? Marine Geology 177:63–78, https://doi.org/10.1016/S0025-3227(01)00124-4.
  34. Marcott, S.A., J.D. Shakun, P.U. Clark, and A.C. Mix. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1,198–1,201, https://doi.org/10.1126/science.1228026.
  35. MARGO Project Members. 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience 2:1–6, https://doi.org/10.1038/ngeo411.
  36. Matear, R.J., and A.C. Hirst. 2003. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Global Biogeochemical Cycles 17, 1125, https://doi.org/10.1029/2002GB001997.
  37. Matsumoto, K. 2007. Biology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry. Geophysical Research Letters 34, L20605, https://doi.org/10.1029/2007GL031301.
  38. McManus, J., W.M. Berelson, G.P. Klinkhammer, D.E. Hammond, and C. Holm. 2005. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta 69:99–108, https://doi.org/10.1016/j.gca.2004.06.023.
  39. McManus, J.F., R. François, J.-M. Gherardi, L. Keigwin, and S.L. Brown-Leger. 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837, https://doi.org/10.1038/nature02494.
  40. Morford, J.L., S.R. Emerson, E.J. Breckel, and S. H. Kim. 2005. Diagenesis of oxyanions (V, U, Re and Mo) in pore waters and sediments from a continental margin. Geochimica et Cosmochimica Acta 69:5,021–5,032, https://doi.org/10.1016/j.gca.2005.05.015.
  41. Plattner, G.-K., F. Joos, and T.F. Stocker. 2002. Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochemical Cycles 16(4), 1096, https://doi.org/10.1029/2001GB001746.
  42. Russell, J.L., K.W. Dixon, A. Gnanadesikan, R.J. Stouffer, and J.R. Toggweiler. 2006. The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. Journal of Climate 19:6,382–6,390, https://doi.org/10.1175/JCLI3984.1.
  43. Sarkar, A., S.K. Bhattacharya, and M.M. Sarin. 1993. Geochemical evidence for anoxic deep water in the Arabian Sea during the last deglaciation. Geochimica et Cosmochimica Acta 57:1,009–1,016, https://doi.org/10.1016/0016-7037(93)90036-V.
  44. Sarmiento, J.L., and N. Gruber. 2006. Ocean Biogeochemical Dynamics. Princeton University Press, 528 pp.
  45. Sarmiento, J.L., T.M.C. Hughes, R.J. Stouffer, and S. Manabe. 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249, https://doi.org/10.1038/30455.
  46. Schilt, A., M. Baumgartner, J. Schwander, D. Burion, E. Capron, J. Chappellaz, L. Loulergue, S. Schüpbach, R. Spahni, H. Fischer, and T. Stocker. 2010. Atmospheric nitrous oxide during the past 140,000 years. Earth and Planetary Science Letters 29:182–192, https://doi.org/10.1016/j.epsl.2010.09.027.
  47. Schmittner, A., and E.D. Galbraith. 2008. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456:373–376, https://doi.org/10.1038/nature07531.
  48. Schmittner, A., A. Oschlies, H.D. Matthews, and E.D. Galbraith. 2008. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochemical Cycles 22, GB1013, https://doi.org/10.1029/2007GB002953.
  49. Shakun, J.D., P.U. Clark, F. He, S.A. Marcott, A.C. Mix, Z. Liu, B.L. Otto-Bliesner, A. Schmittner, and E. Bard. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–55, https://doi.org/10.1038/nature10915.
  50. Sigman, D.M., M.P. Hain, and G.H. Haug. 2010. The polar ocean and glacial cycles in atmospheric CO2
    Nature 466:47–55, https://doi.org/10.1038/nature09149.
  51. Stendardo, I., and N. Gruber. 2012. Oxygen trends over five decades in the North Atlantic. Journal of Geophysical Research 117, C11004, https://doi.org/10.1029/2012JC007909.
  52. Stocker, T.F. 1998. The seesaw effect. Science 282:61–62, https://doi.org/10.1126/science.282.5386.61.
  53. Stramma, L., G.C. Johnson, J. Sprintall, and V. Mohrholz. 2008. Expanding oxygen-minimum zones in the tropical ocean. Science 320:655–658, https://doi.org/10.1126/science.1153847.
  54. Stramma, L., S. Schmidtko, L.A. Levin, and G.C. Johnson. 2010. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Research Part I 157:587–595, https://doi.org/10.1016/j.dsr.2010.01.005.
  55. Ternois, Y., K. Kawamura, N. Ohkouchi, and L. Keigwin. 2000. Alkenone sea surface temperature in the Okhotsk Sea for the last 15 kyr. Geochemical Journal 34:283–293.
  56. Tribovillard, N., T.J. Algeo, T. Lyons, and A. Riboulleau. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232:12­–32, https://doi.org/10.1016/j.chemgeo.2006.02.012.
  57. van Geen, A., Y. Zheng, J. M. Bernhard, K.G. Cannariato, J. Carriquiry, W.E. Dean, B.W. Eakins, J.D. Ortiz, and J. Pike. 2003. On the preservation of laminated sediments along the western margin of North America. Paleoceanography 18, 1098, https://doi.org/10.1029/2003PA000911.
  58. Winckler, G., R.F. Anderson, M.Q. Fleisher, D. McGee, and N. Mahowald. 2008. Covariant glacial-interglacial dust fluxes in the Equatorial Pacific and Antarctica. Science 320:93–96, https://doi.org/10.1126/science.1150595.
  59. Winton, M. 1997. The effect of cold climate upon North Atlantic Deep Water Formation in a simple ocean-atmosphere model. Journal of Climate 10:37–51, https://doi.org/10.1175/1520-0442(1997)010<0037:TEOCCU>2.0.CO;2.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.