Oceanography The Official Magazine of
The Oceanography Society
Volume 24 Issue 04

View Issue TOC
Volume 24, No. 4
Pages 88 - 99

OpenAccess

Modeling and Prediction of Internal Waves in the South China Sea

By Harper Simmons , Ming-Huei Chang, Ya-Ting Chang, Shenn-Yu Chao, Oliver Fringer, Christopher R. Jackson, and Dong Shan Ko 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Nonlinear internal solitary waves generated within Luzon Strait move westward across the northern South China Sea, refract around Dongsha Atoll, and dissipate on the Chinese continental shelf after a journey of over 500 km lasting more than four days. In the last 10 years a great deal of observational, theoretical, and modeling effort has been directed toward understanding and predicting these solitary waves and their effects on the oceanography of the northern South China Sea. This paper reviews a variety of modeling approaches (two- and three-dimensional, kinematic, hydrostatic, and nonhydrostatic) that have been employed to gain insight into the generation mechanisms and physics of the South China Sea’s nonlinear solitary waves with the goal of predicting wave characteristics such as phase speed, amplitude, and arrival time.

Citation

Simmons, H., M.-H. Chang, Y.-T. Chang, S.-Y. Chao, O. Fringer, C.R. Jackson, and D.S. Ko. 2011. Modeling and prediction of internal waves in the South China Sea. Oceanography 24(4):88–99, https://doi.org/10.5670/oceanog.2011.97.

References
    Alford, M.H., R.C. Lien, H.L. Simmons, J. Klymak, S. Ramp, Y.J. Yang, D. Tang, and M.H. Chang. 2010. Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography 40:1,338–1,355, https://doi.org/10.1175/2010JPO4388.1.
  1. Alford, M.H., J.A. Mackinnon, J.D. Nash, H.L. Simmons, A. Pickering, J.M. Klymak, R. Pinkel, O. Sun, L. Rainville, R. Musgrave, and others. 2011. Energy flux and dissipation in Luzon Strait: Two tales of two ridges. Journal of Physical Oceanography, https://doi.org/10.1175/JPO-D-11-073.1.
  2. Althaus, A., E. Kunze, and T. Sanford. 2003. Internal tides radiating from Mendocino Escarpment. Journal of Physical Oceanography 33:1,510–1,527, https://doi.org/10.1175/1520-0485(2003)033<1510:ITRFME>2.0.CO;2.
  3. Barron, C.N., A.B. Kara, P.J. Martin, R.C. Rhodes, and L.F. Smedstad. 2006. Formulation, implementation and examination of vertical coordinate choices in the global Navy Coastal Ocean Model (NCOM). Ocean Modelling 11:347–375, https://doi.org/10.1016/j.ocemod.2005.01.004.
  4. Buijsman, M.C., J.C. McWilliams, and C.R. Jackson. 2010. East‐west asymmetry in nonlinear internal waves from Luzon Strait. Journal of Geophysical Research 115, C10057, https://doi.org/10.1029/2009JC006004.
  5. Chang, Y.-T., T.Y. Tang, S.-Y. Chao, M.-H. Chang, D.S. Ko, Y.J. Yang, W.-D. Liang, and M.J. McPhaden. 2010. Mooring observations and numerical modeling of thermal structures in the South China Sea. Journal of Geophysical Research 115, C10022, https://doi.org/10.1029/2010JC006293.
  6. Egbert, G.D., and S.Y. Erofeeva. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19:183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.
  7. Farmer, D.M., M.H. Alford, R.-C. Lien, Y.J. Yang, M.-H. Chang, and Q. Li. 2011. From Luzon Strait to Dongsha Plateau: Stages in the life of an internal wave. Oceanography 24(4):64–77, https://doi.org/10.5670/oceanog.2011.95.
  8. Farmer, D., Q. Li, and J.‐H. Park. 2009. Internal wave observations in the South China Sea: The role of rotation and non‐linearity. Atmosphere-Ocean 47:267–280, https://doi.org/10.3137/OC313.2009.
  9. Fringer, O.B., M. Gerritsen, and R.L. Street. 2006. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modelling 14:139–278, https://doi.org/10.1016/j.ocemod.2006.03.006.
  10. Hallberg, R. 1997. Stable split time stepping schemes for large-scale ocean modeling. Journal of Computational Physics 135:54–65, https://doi.org/10.1006/jcph.1997.5734.
  11. Hallberg, R., and P. Rhines. 1996. Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. Journal of Physical Oceanography 26:914–940, https://doi.org/10.1175/1520-0485(1996)026<0913:BDCIAO>2.0.CO;2.
  12. Helfrich, K.R., and R.H.J. Grimshaw. 2008. Nonlinear disintegration of the internal tide. Journal of Physical Oceanography 38:686–701, 115, C10022, https://doi.org/10.1175/2007JPO3826.1.
  13. Jackson, C.R. 2009. An empirical model for estimating the geographic location of nonlinear internal solitary waves. Journal of Atmospheric and Oceanic Technology 26:2,243–2,255, https://doi.org/10.1175/2009JTECHO638.1.
  14. Jan, S., R. Lien, and C. Ting. 2008. Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography 64:789–802, https://doi.org/10.1007/s10872-008-0066-5.
  15. Klymack, J.M., R. Pinkel, A.K. Liu, and L. David. 2006. Prototypical solitons in the South China Sea. Geophysical Research Letters 33, L11607, https://doi.org/10.1029/2006GL025932.
  16. Ko, D.S., P.J. Martin, S.-Y. Chao, P.-T. Shaw, and R.-C. Lien. 2008a. Large-amplitude internal waves in the South China Sea. Pp. 197–200 in 2008 Naval Research Laboratory Review. Available online at: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA517521 (accessed October 26, 2011).
  17. Ko, D.S., P.J. Martin, C.D. Rowley, and R.H. Preller. 2008b. A real-time coastal ocean prediction experiment for MREA04. Journal of Marine Systems 69:17–28, https://doi.org/10.1016/j.jmarsys.2007.02.022.
  18. Li, Q., and D.M. Farmer. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography 41:1,345–1,363, https://doi.org/10.1175/2011JPO4587.1.
  19. Lynch, J.F., S.R. Ramp, C.-S. Chiu, T.Y. Tang, Y.J. Yang, and J.A. Simmen. 2004. Research highlights from the Asian Seas International Acoustics Experiment in the South China Sea. IEEE Journal of Oceanic Engineering 29:1,067–1,074, https://doi.org/10.1109/JOE.2005.843162.
  20. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research 102(C3):5,753–5,766, https://doi.org/10.1029/96JC02775.
  21. Merrifield, M.A., and P. Holloway. 2002. Model estimates of M2 internal tide energetics at the Hawaiian Ridge. Journal of Geophysical Research 107(C8), 3179, https://doi.org/10.1029/2001JC000996.
  22. Ramp, S.R., T.Y. Tang, T.F. Duda, J.F. Lynch, A.K. Liu, C.-S. Chiu, F.L. Bahr, H.-R. Kim, and Y.J. Yang. 2004. Internal solitons in the northeastern South China Sea: Part I. Source and deep water propagation. IEEE Journal of Oceanic Engineering 29:1,157–1,181, https://doi.org/10.1109/JOE.2004.840839.
  23. Ramp, S.R., Y.J. Yang, and F.L. Bahr. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes Geophysics 17:481–498, https://doi.org/10.5194/npg-17-481-2010.
  24. Scotti, A., and S. Mitran. 2008. An approximated method for the solution of elliptic problems in thin domains: Application to nonlinear internal waves. Ocean Modelling 25:144–153, https://doi.org/10.1016/j.ocemod.2008.07.005.
  25. Shchepetkin, A.F., and J.C. McWilliams. 2005. The Regional Ocean Modeling System: A split-explicit, free-surface, topography following coordinates ocean model. Ocean Modelling 9:347–404, https://doi.org/10.1016/j.ocemod.2004.08.002.
  26. Shaw, P.-T., D.S. Ko, and S.-Y. Chao. 2009. Internal solitary waves induced by flow over a ridge: With applications to the northern South China Sea. Journal of Geophysical Research 114, C02019, https://doi.org/10.1029/2008JC005007.
  27. St. Laurent, L., H. Simmons, T.Y. Tang, and Y.H. Wang. 2011. Turbulent properties of internal waves in the South China Sea. Oceanography 24(4):78–87, https://doi.org/10.5670/oceanog.2011.97.
  28. Teague, W.J., M.J. Carron, and P.J. Hogan. 1990. A comparison between the Generalized Digital Environmental Model and Levitus climatologies. Journal of Geophysical Research 95:7,167–7,183.
  29. Vitousek, S., and O.B. Fringer. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling 40:72–86, https://doi.org/10.1016/j.ocemod.2011.07.002.
  30. Vlasenko, V., N. Stashchuk, C. Guo, and X. Chen. 2010. Multimodal structure of baroclinic tides in the South China Sea. Nonlinear Processes in Geophysics 17:529–543, https://doi.org/10.5194/npg-17-529-2010.
  31. Zhang, Z., O.B. Fringer, and S.R. Ramp. 2011. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. Journal of Geophysical Research 116, C05022, https://doi.org/10.1029/2010JC006424.
  32. Zhao, Z., and M.H. Alford. 2006. Source and propagation of nonlinear internal waves in the northeastern South China Sea. Journal of Geophysical Research 111, C11012, https://doi.org/10.1029/2006JC003644.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.