Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Climate, energy, and food security are three of the greatest challenges society faces this century. Solutions for mitigating the effects of climate change often conflict with solutions for ensuring society’s future energy and food requirements. For example, BioEnergy with Carbon Capture and Storage (BECCS) has been proposed as an important method for achieving negative CO2 emissions later this century while simultaneously producing renewable energy on a global scale. However, BECCS has many negative environmental consequences for land, nutrient, and water use as well as biodiversity and food production. In contrast, large-scale industrial cultivation of marine microalgae can provide society with a more environmentally favorable approach for meeting the climate goals agreed to at the 2015 Paris Climate Conference, producing the liquid hydrocarbon fuels required by the global transportation sector, and supplying much of the protein necessary to feed a global population approaching 10 billion people.

Citation

Greene, C.H., M.E. Huntley, I. Archibald, L.N. Gerber, D.L. Sills, J. Granados, J.W. Tester, C.M. Beal, M.J. Walsh, R.R. Bidigare, S.L. Brown, W.P. Cochlan, Z.I. Johnson, X.G. Lei, S.C. Machesky, D.G. Redalje, R.E. Richardson, V. Kiron, and V. Corless. 2016. Marine microalgae: Climate, energy, and food security from the sea. Oceanography 29(4):10–15, https://doi.org/10.5670/oceanog.2016.91.

References
    Allen, M.R., D.J. Frame, C. Huntingford, C.D. Jones, J. Lowe, and M. Meinshausen. 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1,163–1,166, https://doi.org/10.1038/nature08019.
  1. Alltech Global Feed Survey. 2015. http://go.alltech.com/feedsurvey.
  2. Beal, C.M., L.N. Gerber, D.L. Sills, M.E. Huntley, S.C. Machesky, M.J. Walsh, J.W. Tester, I. Archibald, J. Granados, and C.H. Greene. 2015. Algal biofuel production for fuels and feed in a 100-Ha facility: A comprehensive techno-economic analysis and life cycle assessment. Algal Research 10:266–279, https://doi.org/10.1016/j.algal.2015.04.017.
  3. Canter, C.E, P. Blowers, R.M. Handler, and D.R. Shonnard. 2015. Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential alternate nutrient sources. Applied Energy 143:71–80, https://doi.org/10.1016/​j.apenergy.2014.12.065.
  4. Citerone, V.R. 2016. Enhancing gas transfer at an air-water interface through strengthened secondary flows motivated by algal biofuel production. Master’s Thesis, Cornell University.
  5. Cornell Algal Biofuel Consortium. 2015. Large-scale Production of Fuel and Feed from Marine Microalgae Project. Cornell Algal Biofuel Consortium Final Report. US Department of Energy Bioenergy Technologies Office, 118 pp. 
  6. de Baar, H.J.W., P.W. Boyd, K.H. Coale, M.R. Landry, A. Tsuda, P. Assmy, D.C.E. Bakker, Y. Bozec, R.T. Barber, M.A. Brzezinski, and others. 2005. Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment. Journal of Geophysical Research 110, C09S16, https://doi.org/10.1029/2004JC002601.
  7. Efroymson, R.A., V.H. Dale, and M.H. Langholtz. 2016. Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems. Global Change Biology Bioenergy, https://doi.org/10.1111/gcbb.12359.
  8. Fuss, S., J.G. Canadell, G.P. Peters, M. Tavoni, R.M. Andrews, P. Ciais, R.B. Jackson, C.D. Jones, F. Kraxner, N. Nakicenovic, and others. 2014. Betting on negative emissions. Nature Climate Change 4:850–853, https://doi.org/10.1038/nclimate2392.
  9. Gatrell, S., K.K. Lum, J.G. Kim, and X. Lei. 2014. Potential of defatted microalgae from the biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. Journal of Animal Science 92:1,306–1,314, https://doi.org/10.2527/jas.2013-7250.
  10. Gerber, L.N., J.W. Tester, C.M. Beal, M.E. Huntley, and D.L. Sills. 2016. Target cultivation and financing parameters for sustainable production of fuel and feed from microalgae. Environmental Science & Technology 50(7):3,333–3,341, https://doi.org/​10.1021/acs.est.5b05381.
  11. Greene, C.H., D.J. Baker, and D.H. Miller. 2010a. A very inconvenient truth. Oceanography 23:214–218, https://doi.org/​10.5670/oceanog.2010.98
  12. Greene, C.H., B.C. Monger, and M.E. Huntley. 2010b. Geoengineering: The inescapable truth of getting to 350. Solutions 1:57–66.
  13. Huntley, M.E., Z.I. Johnson, S.L. Brown, D.L. Sills, L. Gerber, I. Archibald, S.C. Machesky, J. Granados, C. Beal, and C.H. Greene. 2015. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Research 10:249–265, https://doi.org/10.1016/j.algal.2015.04.016.
  14. Huntley, M.E., and D.G. Redalje. 2007. CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaptation Strategies for Global Change 12:573–608, https://doi.org/10.1007/s11027-006-7304-1.
  15. International Energy Agency. 2016. Oil Market Report 2016. https://www.iea.org/oilmarketreport/omrpublic.
  16. IPCC (Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, and others, eds, Cambridge University Press, Cambridge, UK, and New York, NY, USA.
  17. Jones, N. 2009. Climate crunch: Sucking it up. Nature 458:1,094–1,097, https://doi.org/10.1038/4581094a.
  18. Keith, D.W., M. Ha-Duong, and J.K. Stolaroff. 2006. Climate strategy with CO2 capture from air. Climatic Change 74:17–45, https://doi.org/10.1007/s10584-005-9026-x.
  19. Kiron, V., W. Phromkunthong, M. Huntley, I. Archibald, and G. DeScheemaker. 2012. Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquaculture Nutrition 18:521–531, https://doi.org/10.1111/j.1365-2095.2011.00923.x.
  20. Lenton, T.M. 2014. The global potential for carbon dioxide removal. Pp. 52–79 in Geoengineering of the Climate System. R.E. Hester and R.M. Harrison, eds, Royal Society of Chemistry, Cambridge, UK, https://doi.org/10.1039/9781782621225-00052.
  21. Le Quéré, C., R. Moriarty, R.M. Andrew, J.G. Canadell, S. Sitch, J.I. Korsbakken, P. Friedlingstein, G.P. Peters, J. Andres, T.A. Boden, and others. 2015. Global carbon budget 2015. Earth System Science Data 7:349–396, https://doi.org/10.5194/essd-7-349-2015
  22. Lum, K.K., J. Kim, and X. Lei. 2013. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology 4:53, https://doi.org/​10.1186/2049-1891-4-53.
  23. Martin, J.H. 1990. A new iron age, or a ferric fantasy. JGOFS Newsletter 1(4):5,11.
  24. McClade, C., and P. Ekins. 2015. The geographical distribution of fossil fuels unused when limiting global warming to 2°C. Nature 517:187–190, https://doi.org/10.1038/nature14016.
  25. McGlashan, N.R., M.H.W. Workman, B. Caldecott, and N. Shah. 2012. Negative Emissions Technologies. Grantham Institute for Climate Change Briefing Paper No 8, Imperial College, London, UK, 27 pp.
  26. Meinshausen, M., N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R. Allen. 2009. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1,158–1,162, https://doi.org/10.1038/nature08017.
  27. Miotti, M., G.J. Supran, E.J. Kim, and J.E. Trancik. 2016. Personal vehicles evaluated against climate change mitigation targets. Environmental Science & Technology, https://doi.org/10.1021/acs.est.6b00177.
  28. Moody, J.W., C.M. McGinty, and J.C. Quinn. 2014. Global evaluation of biofuel potential from microalgae. Proceedings of the National Academy of Sciences of the United States of America 111:8,691–8,696, https://doi.org/10.1073/pnas.1321652111.
  29. Mu, D., M. Min, B. Krohn, K.A. Mullins, R. Ruan, and J. Hill. 2014. Life cycle environmental impacts of wastewater-based algal biofuels. Environmental Science & Technology 48(19):11,696–11,704, https://doi.org/10.1021/es5027689.
  30. Otto, A, T. Grube, S. Schiebahn, and D. Stolten. 2015. Closing the loop: Captured CO2 as a feedstock in the chemical industry. Energy & Environmental Science 8:3,283–3,297, https://doi.org/10.1039/c5ee02591e.
  31. Rogelj, J., M. den Elzen, N. Hohne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, and M. Meinshausen. 2016. Paris agreement climate proposals need a boost to keep warming well below 2°C. Nature 534:631–639, https://doi.org/10.1038/nature18307.
  32. Searchinger, T.D., R. Edwards, D. Mulligan, R. Heimlich, and R. Plevin. 2015. Do biofuel policies seek to cut emissions by cutting food? Science 347:1,420–1,422, https://doi.org/10.1126/science.1261221
  33.  Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler. 1998. A Look Back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae. National Renewable Energy Institute, NREL/TP-580-24190, Golden, CO, 294 pp., http://www.nrel.gov/docs/legosti/fy98/24190.pdf.
  34. Sills, D.L., V. Paramita, M.J. Franke, M.C. Johnson, T.M. Akabas, C.H. Greene, and J.W. Tester. 2013. Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environmental Science & Technology 47:687–694, https://doi.org/10.1021/es3029236.
  35. Smith, P., S.J. Davis, F. Creutzig, S. Fuss, J. Minx, B. Gabrielle, E. Kato, R.B. Jackson, A. Cowie, E. Kriegler, and others. 2016. Biophysical and economic limits to negative CO2 emissions. Nature Climate Change 6:42–50, https://doi.org/10.1038/nclimate2870.
  36. Strong, A., S. Chilsom, C. Miller, and J. Cullen. 2009a. Ocean fertilization: Time to move on. Nature 461:347–348, https://doi.org/​10.1038/461347a.
  37. Strong, A.L., J.J. Cullen, and S.W. Chilsom. 2009b. Ocean fertilization: Science, policy, and commerce. Oceanography 22(3):236–261, https://doi.org/10.5670/oceanog.2009.83
  38. Tilman, D., C. Balzer, J. Hill, and B. Befort. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108:20,260–20,264, https://doi.org/​10.1073/pnas.1116437108.
  39. United Nations Food and Agriculture Organization. 2016. FAOSTAT. http://faostat3.fao.org/browse/Q/QC/E.
  40. United States Energy Information Administration. 2016. Short-Term Energy Outlook January 2016. http://www.eia.gov/forecasts/steo/report/us_oil.cfm.
  41. Walsh, M.J., L.N. Gerber, D.L. Sills, I. Archibald, C.M. Beal, X.G. Lei, M.E. Huntley, Z. Johnson, and C.H. Greene. 2016. Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency. Environmental Research Letters 11:114006, https://doi.org/10.1088/1748-9326/11/11/114006.
  42. Walsh, B.J., F. Rydzak, A. Palazzo, F. Kraxner, M. Herrero, P.M. Schenk, P. Ciais, I.A. Janssens, J. Peñuelas, A. Niederl‑Schmidinger, and M. Obersteiner. 2015. New feed sources key to ambitious climate targets. Carbon Balance Management 10:26, https://doi.org/10.1186/s13021-015-0040-7.
  43. Williamson, P. 2016. Emissions reduction: Scrutinize CO2 removal methods. Nature 530:153–155, https://doi.org/10.1038/530153a.
  44. Zeller, M.A., R.W. Hunt, A. Jones, and S. Sharma. 2013. Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. Journal of Applied Polymer Science 130(5):3,263–3,275, https://doi.org/10.1002/app.39559.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.