Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 01

View Issue TOC
Volume 27, No. 1
Pages 108 - 119

OpenAccess

Historical and Future Trends in Ocean Climate and Biogeochemistry

By Scott C. Doney, Laurent Bopp, and Matthew C. Long 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Changing atmospheric composition due to human activities, primarily carbon dioxide (CO2) emissions from fossil fuel burning, is already impacting ocean circulation, biogeochemistry, and ecology, and model projections indicate that observed trends will continue or even accelerate over this century. Elevated atmospheric CO2 alters Earth’s radiative balance, leading to global-scale warming and climate change. The ocean stores the majority of resulting anomalous heat, which in turn drives other physical, chemical, and biological impacts. Sea surface warming and increased ocean vertical stratification are projected to reduce global-integrated primary production and export flux as well as to lower subsurface dissolved oxygen concentrations. Upper trophic levels will be affected both directly by warming and indirectly from changes in productivity and expanding low oxygen zones. The ocean also absorbs roughly one-quarter of present-day anthropogenic CO2 emissions. The resulting changes in seawater chemistry, termed ocean acidification, include declining pH and saturation state for calcium carbon minerals that may have widespread impacts on many marine organisms. Climate warming will likely slow ocean CO2 uptake but is not expected to significantly reduce upper ocean acidification. Improving the accuracy of future model projections requires better observational constraints on current rates of ocean change and a better understanding of the mechanisms controlling key physical and biogeochemical processes.

Citation

Doney, S.C., L. Bopp, and M.C. Long. 2014. Historical and future trends in ocean climate and biogeochemistry. Oceanography 27(1):108–119, https://doi.org/10.5670/oceanog.2014.14.

References
    Arora, V., G. Boer, P. Friedlingstein, M. Eby, C. Jones, J. Christian, G. Bonan, L. Bopp, V. Brovkin, P. Cadule, and others. 2013. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. Journal of Climate 26:5,289–5,314, https://doi.org/10.1175/JCLI-D-12-00494.1.
  1. Balmaseda, M.A., K.E. Trenberth, and E. Källén. 2013. Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters 40:1,754–1,759, https://doi.org/10.1002/grl.50382.
  2. Behrenfeld, M.J., R.T. O’Malley, D.A. Siegel, C.R. McClain, J.L. Sarmiento, G.C. Feldman, A.J. Milligan, P.G. Falkowski, R.M. Letelier, and E.S. Boss. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:752–755, https://doi.org/10.1038/nature05317.
  3. Bianchi, D., J.P. Dunne, J.L. Sarmiento, and E.D. Galbraith. 2012. Data-based estimates of suboxia, denitrification and N2O production in the ocean and their sensitivities to dissolved oxygen. Global Biogeochemical Cycles 26, GB2009, https://doi.org/10.1029/2011GB004209.
  4. Bindoff, N.L., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, and others. 2007. Observations: Oceanic climate change and sea level. Pp. 385–432 in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.
  5. Bopp, L., C. Le Quéré, M. Heimann, A.C. Manning, and P. Monfray. 2002. Climate induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles 16(2), 1022, https://doi.org/10.1029/2001GB001445.
  6. Bopp, L., P. Monfray, O. Aumont, J.L. Dufresne, H. Le Treut, G. Madec, L. Terray, and J.C. Orr. 2001. Potential impact of climate change on marine export production. Global Biogeochemical Cycles 15:81–99, https://doi.org/10.1029/1999GB001256.
  7. Bopp, L., L. Resplandy, J.C. Orr, S.C. Doney, J.P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, and others. 2013. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10:6,225–6,245, https://doi.org/10.5194/bgd-10-3627-2013.
  8. Brewer, P.G., and E.T. Peltzer. 2009. Limits to marine life. Science 324:347–348, https://doi.org/10.1126/science.1170756.
  9. Cheung, W.W.L., V.W.Y. Lam, J.L. Sarmiento, K. Kearney, R. Watson, and D. Pauly. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 4:235–251, https://doi.org/10.1111/j.1467-2979.2008.00315.x.
  10. Comiso, J.C., 2011. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate 25:1,176-1,193, https://doi.org/10.1175/JCLI-D-11-00113.1.
  11. Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, and others. 2007. Couplings between changes in the climate system and biogeochemistry. Pp. 499–587 in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, UK, and New York, NY, USA.
  12. Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–929, https://doi.org/10.1126/science.1156401.
  13. Doney, S.C. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1,512–1,516, https://doi.org/10.1126/science.1185198.
  14. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–192, https://doi.org/10.1146/annurev.marine.010908.163834.
  15. Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, N. Knowlton, and others. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4:11–37, https://doi.org/10.1146/annurev-marine-041911-111611.
  16. Dore, J.E., R. Lukas, D.W. Sadler, M.J. Church, and D.M. Karl. 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences of the United States of America 106:12,235–12,240, https://doi.org/10.1073/pnas.0906044106.
  17. Dlugokencky, E., and P. Tans. 2013. NOAA/ESRL Global CO2 Data. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.
  18. Feely, R.A., S.R. Alin, J. Newton, C.L. Sabine, M. Warner, A. Devol, C. Krembs, and C. Maloy. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science 88:442–449, https://doi.org/10.1016/j.ecss.2010.05.004.
  19. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1,490–1,492, https://doi.org/10.1126/science.1155676.
  20. Foster, G., and S. Rahmstorf. 2011. Global temperature evolution 1979–2010. Environmental Research Letters 6, 044022, https://doi.org/10.1088/1748-9326/6/4/044022.
  21. Frölicher, T.L., F. Joos, G.-K. Plattner, M. Steinacher, and S.C. Doney. 2009. Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble. Global Biogeochemical Cycles 23, GB1003, https://doi.org/10.1029/2008GB003316.
  22. Gattuso, J.P., and L. Hansson, eds. 2011. Ocean Acidification. Oxford University Press, Oxford UK, 326 pp.
  23. Gehlen, M., N. Gruber, R. Gangstø, L. Bopp, and A. Oschlies. 2011. Biogeochemical consequences of ocean acidification and feedbacks to the Earth system. Pp. 230–248 in Ocean Acidification. J.P. Gattuso and L. Hansson, eds, Oxford University Press, Oxford, UK.
  24. Gruber, N. 2011. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society A 369:1,980–1,996, https://doi.org/10.1098/rsta.2011.0003.
  25. Gruber, N., H. Frenzel, S.C. Doney, P. Marchesiello, J.C. McWilliams, J.R. Moisan, J.J. Oram, G.-K. Plattner, and K.D. Stolzenbach. 2006. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System. Deep-Sea Research Part I 53:1,483–1,516, https://doi.org/10.1016/j.dsr.2006.06.005.
  26. Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T.L. Frölicher, and G.-K. Plattner. 2012. Rapid progression of ocean acidification in the California current system. Science 337:220–223, https://doi.org/10.1126/science.1216773.
  27. Harvell, C.D., C.E. Mitchell, J.R. Ward, S. Altizer, A.P. Dobson, R.S. Ostfeld, and M.D. Samuel. 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296:2,158–2,162, https://doi.org/10.1126/science.1063699.
  28. Helm, K.P., N.L. Bindoff, and J.A. Church. 2011. Observed decreases in oxygen content of the global ocean. Geophysical Research Letters 38, L23602, https://doi.org/10.1029/2011GL049513.
  29. Henson, S.A., J.L. Sarmiento, J.P. Dunne, L. Bopp, I. Lima, S.C. Doney, J. John, and C. Beaulieu. 2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7:621–640, https://doi.org/10.5194/bg-7-621-2010.
  30. Hönisch, B., A. Ridgwell, D.N. Schmidt, E. Thomas, S.J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R.C. Martindale, S.E. Greene, and others. 2012. The geological record of ocean acidification. Science 335:1,058–1,063, https://doi.org/10.1126/science.1208277.
  31. Keeling, R.F., A. Körtzinger, and N. Gruber. 2010. Ocean deoxygenation in a warming world. Annual Review of Marine Science 2:199–229, https://doi.org/10.1146/annurev.marine.010908.163855.
  32. Kennedy, J., P. Thorne, T. Peterson, R. Reudy, P. Stott, D. Parker, S. Good, H. Titchner, and K. Willett. 2010. How do we know the world has warmed? Pp. S26–S27 in State of the Climate in 2009. D.S. Arndt, M.O. Baringer, and M.R. Johnson, eds, Special supplement to the Bulletin of the American Meteorological Society, vol. 91.
  33. Kosaka, Y., and S.-P. Xie. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407, https://doi.org/10.1038/nature12534.
  34. Kwok, R., and D.A. Rothrock. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records:1958–2008. Geophysical Research Letters 36, L15501, https://doi.org/10.1029/2009GL039035.
  35. Le Quéré, C., R.J. Andres, T. Boden, T. Conway, R.A. Houghton, J.I. House, G. Marland, G.P. Peters, G.R. van der Werf, A. Ahlström, and others. 2013. The global carbon budget 1959–2011. Earth System Science Data 5:165–185, https://doi.org/10.5194/essd-5-165-2013.
  36. Le Quéré, C., T. Takahashi, E.T. Buitenhuis, C. Rödenbeck, and S.C. Sutherland. 2010. Impact of climate change and variability on the global oceanic sink of CO2. Global Biogeochemical Cycles 24:GB4007, https://doi.org/10.1029/2009GB003599.
  37. Levin, L.A., W. Ekau, A.J. Gooday, F. Jorissen, J.J. Middelburg, S.W.A. Naqvi, C. Neira, N.N. Rabalais, and J. Zhang. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:2,063–2,098, https://doi.org/10.5194/bg-6-2063-2009.
  38. Levitus, S., J.I. Antonov, T.P. Boyer, O.K. Baranova, H.E. Garcia, R.A. Locarnini, A.V. Mishonov, J.R. Reagan, D. Seidov, E.S. Yarosh, and M.M. Zweng. 2012. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters 39, L10603, https://doi.org/10.1029/2012GL051106.
  39. MacFarling Meure, C., D. Etheridge, C. Trudinger, P. Steele, R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins. 2006. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters 33, L14810, https://doi.org/10.1029/2006GL026152.
  40. Marcott, S.A., J.D. Shakun, P.U. Clark, and A.C. Mix. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1,198–1,201, https://doi.org/10.1126/science.1228026.
  41. Marinov, I., S.C. Doney, and I.D. Lima. 2010. Response of ocean phytoplankton community structure to climate change over the 21st century: Partitioning the effects of nutrients, temperature and light. Biogeosciences 7:3,941–3,959, https://doi.org/10.5194/bg-7-3941-2010.
  42. Meehl, G.A., J. Arblaster, J. Fasullo, A. Hu, and K. Trenberth. 2011. Model based evidence of deep ocean heat uptake during surface temperature hiatus periods. Nature Climate Change 1:360–364, https://doi.org/10.1038/nclimate1229.
  43. Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, and others. 2007. Global climate projections. Pp. 747–845 in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.
  44. Nye, J.A., J.S. Link, J.A. Hare, and W.J. Overholtz. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Marine Ecology Progress Series 393:111–129, https://doi.org/10.3354/meps08220.
  45. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on marine calcifying organisms. Nature 437:681–686, https://doi.org/10.1038/nature04095.
  46. Paulmier, A., and D. Ruiz-Pino. 2009. Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography 80:113–128, https://doi.org/10.1016/j.pocean.2008.08.001.
  47. Polovina, J.J., E.A. Howell, and M. Abecassis. 2008. Ocean’s least productive waters are expanding. Geophysical Research Letters, 35, L03618, https://doi.org/10.1029/2007GL031745.
  48. Pörtner, H.O., and A.P. Farrell. 2008. Physiology and climate change. Science 322:690–692, https://doi.org/10.1126/science.1163156.
  49. Purkey, S.G., and G.C. Johnson. 2010. Warming of global abyssal and deep southern ocean between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. Journal of Climate 23:6,336–6,351, https://doi.org/10.1175/2010JCLI3682.1.
  50. Rabalais, N.N., R.J. Diaz, L.A. Levin, R.E. Turner, D. Gilbert, and J. Zhang. 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619, https://doi.org/10.5194/bg-7-585-2010.
  51. Sabine, C.L., and T. Tanhua. 2010. Estimation of anthropogenic CO2 inventories in the ocean. Annual Review of Marine Science 2:175–198, https://doi.org/10.1146/annurev-marine-120308-080947.
  52. Sarmiento, J., R. Slater, R. Barber, L. Bopp, S.C. Doney, A.C. Hirst, J. Kleypas, R. Matear, U. Mikolajewicz, P. Monfray, and others. 2004. Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles 18, GB3003, https://doi.org/10.1029/2003GB002134.
  53. Siegel, D.A., M.J. Behrenfeld, S. Maritorena, C.R. McClain, D. Antoine, S.W. Bailey, P.S. Bontempi, E.S. Boss, H.M. Dierssen, S.C. Doney, and others. 2013. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sensing of Environment 135:77–91, https://doi.org/10.1016/j.rse.2013.03.025.
  54. Smith, T.M., R.W. Reynolds, T.C. Peterson, and J. Lawrimore. 2008. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). Journal of Climate 21:2,283–2,296, https://doi.org/10.1175/2007JCLI2100.1.
  55. Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, and others. 2007. Technical summary. Pp. 19–91 in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.
  56. Somero, G.N. 2012. The physiology of global change: Linking patterns to mechanisms. Annual Review of Marine Science 4:39–61, https://doi.org/10.1146/annurev-marine-120710-100935.
  57. Steinacher, M., F. Joos, T.L. Frölicher, L. Bopp, P. Cadule, V. Cocco, S.C. Doney, M. Gehlen, K. Lindsay, J.K. Moore, and others. 2010. Projected 21st century decrease in marine productivity: A multi-model analysis. Biogeosciences 7:979–1,005, https://doi.org/10.5194/bg-7-979-2010.
  58. Steinacher, M., F. Joos, T.L. Frölicher, G.-K. Plattner, and S.C. Doney. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533, https://doi.org/10.5194/bg-6-515-2009.
  59. Stramma, L., G.C. Johnson, J. Sprintall, and V. Mohrholz. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658, https://doi.org/10.1126/science.1153847.
  60. Stramma, L., E.D. Prince, S. Schmidtko, J. Luo, J.P. Hoolihan, M. Visbeck, D.W.R. Wallace, P. Brandt, and A. Körtzinger. 2012. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change 2:33–37, https://doi.org/10.1038/nclimate1304.
  61. Stroeve, J.C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W.N. Meier. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters 39, L16502, https://doi.org/10.1029/2012GL052676.
  62. Tans, P., and R. Keeling. 2012. Trends in atmospheric carbon dioxide, full Mauna Loa CO2 record. http://www.esrl.noaa.gov/gmd/ccgg/trends.
  63. van Vuuren, D.P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, and others. 2011. The representative concentration pathways: An overview. Climatic Change 109:5–31, https://doi.org/10.1007/s10584-011-0148-z.
  64. Walsh, J.E., and W.L. Chapman. 2001. 20th-century sea ice variations from observational data. Annals of Glaciology 33:444–448, http://doi.org/10.3189/172756401781818671.
  65. Wang, M., and J.E. Overland. 2012. A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophysical Research Letters 39, L18501, https://doi.org/10.1029/2012GL052868.
  66. Ward, J.R., and K.D. Lafferty. 2004. The elusive baseline of marine disease: Are diseases in ocean ecosystems increasing? PLoS Biology 2:e120, https://doi.org/10.1371/journal.pbio.0020120.
  67. Whitney, F.A., H.J. Freeland, and M. Robert, 2007. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Progress in Oceanography 75:179–199, https://doi.org/10.1016/j.pocean.2007.08.007.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.