Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 04

View Issue TOC
Volume 29, No. 4
Pages 22 - 33

OpenAccess

Greenland Melt and the Atlantic Meridional Overturning Circulation

By Eleanor Frajka-Williams , Jonathan L. Bamber, and Kjetil Våge 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

More than a decade of observations of the meridional overturning circulation in the subtropical North Atlantic show it to be highly variable on time scales of days to years and with an overall trend toward slowing down. Over the same time period, melting from Greenland (and elsewhere in the Arctic, including from sea ice) has been increasing, resulting in greater freshwater input to the northern North Atlantic. In this article, we examine evidence for the impact, if any, of this influx of freshwater on the large-scale ocean circulation and for potential changes.

Citation

Frajka-Williams, E., J.L. Bamber, and K. Våge. 2016. Greenland melt and the Atlantic meridional overturning circulation. Oceanography 29(4):22–33, https://doi.org/10.5670/oceanog.2016.96.

References
    Bamber, J., M. den Broeke, and J. Ettema. 2012. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophysical Research Letters 39, L19501, https://doi.org/10.1029/2012GL052552.
  1. Barber, D.C., A. Dyke, C. Hillaire-Marcel, and A.E. Jennings. 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348, https://doi.org/10.1038/22504.
  2. Beaird, N., F. Straneo, and W. Jenkins. 2015. Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophysical Research Letters 42:7,705–7,713, https://doi.org/10.1002/2015GL065003.
  3. Bingham, R.J., C.W. Hughes, V. Roussenov, and R.G. Williams. 2007. Meridional coherence of the North Atlantic meridional overturning circulation. Geophysical Research Letters 34, L23606, https://doi.org/10.1029/2007GL031731.
  4. Bower, A.S., M.S. Lozier, S.F. Gary, and C.W. Böning. 2009. Interior pathways of the North Atlantic meridional overturning circulation. Nature 459:243–247, https://doi.org/10.1038/nature07979.
  5. Böning, C.W., E. Behrens, A. Biastoch, K. Getzlaff, and J.L. Bamber. 2016. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience 9:523–527, https://doi.org/10.1038/ngeo2740.
  6. Box, J.E., and W. Colgan. 2013. Greenland Ice Sheet mass balance reconstruction: Part III. Marine ice loss and total mass balance (1840–2010). Journal of Climate 26:6,990–7,002, https://doi.org/10.1175/JCLI-D-12-00546.1.
  7. Buckley, M.W., and J. Marshall. 2016. Observations, inferences, and mechanisms of Atlantic meridional overturning circulation variability: A review. Reviews of Geophysics 54:5–63, https://doi.org/​10.1002/2015RG000493.
  8. Butler, E.D., K.I.C. Oliver, J.J.-M. Hirschi, and J.V. Mecking. 2016. Reconstructing global overturning from meridional density gradients. Climate Dynamics 46(7–8):2,593-2,610, https://doi.org/​10.1007/s00382-015-2719-6.
  9. Cunningham, S.A., T. Kanzow, D. Rayner, M.O. Baringer, W.E. Johns, J. Marotzke, H.R. Longworth, E.M. Grant, J.J.-M. Hirschi, L.M. Beal, and others. 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938, https://doi.org/10.1126/science.1141304.
  10. Cunningham, S.A., C.D. Roberts, E. Frajka-Williams, W.E. Johns, W. Hobbs, M.D. Palmer, D. Rayner, D.A. Smeed, and G. McCarthy. 2014. Atlantic meridional overturning circulation slowdown cooled the subtropical ocean. Geophysical Research Letters 40:6,202–6,207, https://doi.org/10.1002/2013GL058464.
  11. Curry, R., and C. Mauritzen. 2005. Dilution of the northern North Atlantic Ocean in recent decades. Science 308(5729):1,772–1,774, https://doi.org/10.1126/science.1109477.
  12. de Jong, M.F., and L. de Steur. 2016. Strong winter cooling over the Irminger Sea in winter 2014–2015, exceptional deep convection, and the emergence of anomalously low SST. Geophysical Research Letters 43:7,106–7,113, https://doi.org/​10.1002/2016GL069596.
  13. Dickson, R., J. Meincke, S.-A. Malmberg, and A.J. Lee. 1988. The “great salinity anomaly” in the northern North Atlantic, 1968–1982. Progress in Oceanography 20:103–151, https://doi.org/​10.1016/0079-6611(88)90049-3.
  14. Dickson, R.R., T.J. Osborn, J.W. Hurrell, J. Meincke, J. Blindheim, B. Adlandsvik, T. Vinje, G. Alekseev, and W. Maslowski. 2000. The Arctic Ocean response to the North Atlantic Oscillation. Journal of Climate 13:2,671–2,696, https://doi.org/10.1175/​1520-0442(2000)013<2671:TAORTT>2.0.CO;2.
  15. Doyle, J.D., and M.A. Shapiro. 1999. Flow response to large-scale topography: The Greenland tip jet. Tellus 51:728–748, https://doi.org/​10.1034/j.1600-0870.1996.00014.x.
  16. Dukhovskoy, D.S., P.G. Myers, G. Platov, M.-L. Timmermans, B. Curry, A. Proshutinsky, J.L. Bamber, E. Chassignet, X. Hu, C.M. Lee, and R. Somavilla. 2016. Greenland freshwater pathways in the sub-Arctic seas from model experiments with passive tracers. Journal of Geophysical Research 121(1):877–907, https://doi.org/​10.1002/2015JC011290.
  17. Enderlin, E.M., I.M. Howat, S. Jeong, M.J. Noh, J.H. van Angelen, and M.R. van den Broeke. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters 41(3):866–872, https://doi.org/10.1002/​2013GL059010.
  18. Fettweis, X., B. Franco, M. Tedesco, J.H. van Angelen, J.T.M. Lenaerts, M.R. van den Broeke, and H. Gallée. 2013. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere 7(2):469–489, https://doi.org/10.5194/tc-7-469-2013.
  19. Frajka-Williams, E. 2015. Estimating the overturning at 26°N using satellite altimetry and cable measurements. Geophysical Research Letters 42:3,458–3,464, https://doi.org/​10.1002/2015GL063220.
  20. Frajka-Williams, E., C.S. Meinen, W.E. Johns, D.A. Smeed, A. Duchez, A.J. Lawrence, D.A. Cuthbertson, G.D. McCarthy, H.L. Bryden, M.O. Baringer, and others. 2016. Compensation between meridional flow components of the Atlantic MOC at 26°N. Ocean Science 12(2):481–493, https://doi.org/10.5194/os-12-481-2016.
  21. Fröb, F., A. Olson, K. Vage, G.W.K. Moore, I. Yashayaev, E. Jeansson, and B. Rajasakaren. 2016. Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior. Nature Communications 7:13244, https://doi.org/10.1038/ncomms13244.
  22. Gebbie, G., and P. Huybers. 2010. Total matrix intercomparison: A method for determining the geometry of water-mass pathways. Journal of Physical Oceanography 40:1,710–1,728, https://doi.org/​10.1175/2010JPO4272.1.
  23. Gerdes, R., W. Hurlin, and S.M. Griffies. 2006. Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Modelling 12(3–4):416–435.
  24. Hawkins, E., R.S. Smith, L.C. Allison, J.M. Gregory, T.J. Woollings, H. Pohlmann, and B. de Cuevas. 2011. Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters 38, L10605, https://doi.org/​10.1029/2011GL047208.
  25. Jackson, L.C., R. Kahana, T. Graham, M.A. Ringer, T. Woollings, J.V. Mecking, and R.A. Wood. 2015. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics 45(11):3,299–3,316, https://doi.org/10.1007/s00382-015-2540-2.
  26. Kelly, K.A., K. Drushka, L. Thompson, D. Le Bars, and E.L. McDonagh. 2016. Impact of a slowdown of Atlantic overturning circulation on heat and freshwater transports. Geophysical Research Letters 43:7,625–7,631, https://doi.org/10.1002/2016GL069789.
  27. Johnson, H.L., and D.P. Marshall. 2002. A theory for the surface Atlantic response to thermohaline variability. Journal of Physical Oceanography 32(4):1,121–1,132, https://doi.org/​10.1175/1520-0485(2002)​032<1121:ATFTSA>2.0.CO;2.
  28. Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf. 2007. On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics 45(2):RG2001, https://doi.org/10.1029/2004RG000166.
  29. Lazier, J.R.N. 1980. Oceanographic conditions at Ocean Weather Ship Bravo, 1964–1974. Atmosphere-Ocean 18(3):227–238, https://doi.org/​10.1080/07055900.1980.9649089.
  30. Lazier, J., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines. 2002. Convection and restratification in the Labrador Sea, 1990–2000. Deep Sea Research Part I 49(10):1,819–1,835, https://doi.org/10.1016/S0967-0637(02)00064-X.
  31. Lenton, T.M., H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schnellnhuber. 2008. Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences of the United States of America 105(6):1,786–1,793, https://doi.org/10.1073/pnas.0705414105.
  32. Levermann, A., J. Bamber, S. Drijfhout, A. Ganopolski, W. Haeberli, N. Harris, M. Huss, K. Krüger, T. Lenton, R. Lindsay, and others. 2012. Potential climatic transitions with profound impact on Europe. Climatic Change 110:845–878, https://doi.org/10.1007/s10584-011-0126-5.
  33. Lozier, M.S. 2012. Overturning in the North Atlantic. Annual Review of Marine Science 4:291–315, https://doi.org/10.1146/annurev-marine-120710-100740.
  34. Luo, H., R.M. Castelao, A.K. Rennermalm, M. Tedesco, A. Bracco, P.L. Yager, and T.L. Mote. 2016. Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nature Geoscience 9:528–532, https://doi.org/10.1038/ngeo2708.
  35. Manabe, S., and R.J. Stouffer. 1988. Two stable equilibria of a coupled ocean-atmosphere model. Journal of Climate 1:841–866, https://doi.org/10.1175/1520-0442(1988)001​<0841:TSEOAC>2.0.CO;2.
  36. McCarthy, G., E. Frajka-Williams, W.E. Johns, M.O. Baringer, C.S. Meinen, H.L. Bryden, D. Rayner, A. Duchez, C.D. Roberts, and S.A. Cunningham. 2012. Observed interannual variability of the Atlantic MOC at 26.5°N. Geophysical Research Letters 39, L19609, https://doi.org/10.1029/2012GL052933.
  37. McCarthy, G.D., D.A. Smeed, W.E. Johns, E. Frajka-Williams, B.I. Moat, D. Rayner, M.O. Baringer, C.S. Meinen, and H.L. Bryden. 2015. Measuring the Atlantic meridional overturning circulation at 26°N. Progress in Oceanography 130:91–111, https://doi.org/10.1016/j.pocean.2014.10.006.
  38. McDonagh, E.L., B.A. King, H.L. Bryden, P. Courtois, Z. Szuts, M. Baringer, S.A. Cunningham, C. Atkinson, and G. McCarthy. 2015. Continuous estimate of Atlantic Ocean freshwater flux at 26.5°N. Journal of Climate 28:8,888–8,906, https://doi.org/10.1175/JCLI-D-14-00519.1.
  39. Moore, G.W.K., and I.A. Renfrew. 2005. Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. Journal of Climate 18:3,713–3,725, https://doi.org/10.1175/JCLI3455.1.
  40. Moore, G.W.K., R.S. Pickart, I.A. Renfrew, and K. Våge. 2014. What causes the location of the air-sea turbulent heat flux maximum over the Labrador Sea? Geophysical Research Letters 41:3,628–3,635, https://doi.org/10.1002/2014GL059940.
  41. Myers, P.G. 2005. Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation. Geophysical Research Letters 32, L06605, https://doi.org/10.1029/2004GL022082.
  42. Pickart, R.S., and M.A. Spall. 2007. Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. Journal of Physical Oceanography 37:2,207–2,227, https://doi.org/​10.1175/JPO3178.1.
  43. Pickart, R.S., M.A. Spall, M.H. Ribergaard, G.W.K. Moore, and R.F. Milliff. 2003. Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424:152–156, https://doi.org/10.1038/nature01729.
  44. Pillar, H., P. Heimbach, H. Johnson, and D. Marshall. 2016. Dynamical attribution of recent variability in Atlantic overturning. Journal of Climate, https://doi.org/10.1175/JCLI-D-15-0727.1.
  45. Rahmstorf, S. 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12(12):799–811, https://doi.org/10.1007/s003820050144.
  46. Rahmstorf, S., J.E. Box, G.F. Feulner, M.E. Mann, A. Robinson, S. Rutherford, and E.J. Schaffernicht. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change 5(5):475–480, https://doi.org/10.1038/nclimate2554.
  47. Roberts, C.D., L. Jackson, and D. McNeall. 2014. Is the 2004–2012 reduction of the Atlantic meridional overturning circulation significant? Geophysical Research Letters 41(9):1–7, https://doi.org/10.1002/2014GL059473.
  48. Robson, J., D. Hodson, E. Hawkins, and R. Sutton. 2014. Atlantic overturning in decline? Nature Geoscience 7:2–3, https://doi.org/10.1038/ngeo2050.
  49. Roemmich, D., and J. Gilson. 2009. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography 82:81–100, https://doi.org/10.1016/j.pocean.2009.03.004.
  50. Schott, F., R. Zantopp, L. Stramma, M. Dengler, J. Fischer, and M. Wibaux. 2004. Circulation and deep-water export at the western exit of the subpolar North Atlantic. Journal of Physical Oceanography 34:817–843, https://doi.org/10.1175/1520-0485(2004)034​<0817:CADEAT>2.0.CO;2.
  51. Schulze, L.M., R.S. Pickart, and G.W.K. Moore. 2016. Atmospheric forcing during active convection in the Labrador Sea and its impact on mixed-layer depth. Journal of Geophysical Research Oceans 121, https://doi.org/10.1002/2015JC011607.
  52. Schulze, L.M. 2016. Freshwater fluxes and vertical mixing in the Labrador Sea. PhD Dissertation, Graduate School of the National Oceanography Centre (GSNOCS), University of Southampton, Southampton, UK, 198 pp.
  53. Smeed, D.A., G.D. McCarthy, S.A. Cunningham, E. Frajka-Williams, D. Rayner, W.E. Johns, C.S. Meinen, M.O. Baringer, B.I. Moat, A. Duchez, and H.L. Bryden. 2014. Observed decline of the Atlantic meridional overturning circulation 2004 to 2012. Ocean Science 10:29–38, https://doi.org/​10.5194/os-10-29-2014.
  54. Smethie, W.M., D.A. Lebel, R.A. Fine, M. Rhein, and D. Kieke. 2013. Strength and variability of the deep limb of the North Atlantic meridional overturning circulation from chlorofluorocarbon inventories. Pp. 119–130 in Ocean Circulation: Mechanisms and Impacts – Past and Future Changes of Meridional Overturning. A. Schmittner, J.C.H. Chiang, and S.R. Hemming, eds, American Geophysical Union, Washington, DC.
  55. Srokosz, M.A., and H.L. Bryden. 2015. Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science 348, https://doi.org/10.1126/science.1255575.
  56. Stommel, H. 1961. Thermohaline convection with two stable regimes of flow. Tellus 13:224–230, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x.
  57. Straneo, F., and C. Cenedese. 2015. The dynamics of Greenland’s glacial fjords and their role in climate. Annual Review of Marine Science 7:89–112, https://doi.org/10.1146/annurev-marine-010213-135133
  58. Trenberth, K.E., and J.M. Caron. 2001. Estimates of meridional atmosphere and ocean heat transports. Journal of Climate 14:3,433–3,443, https://doi.org/10.1175/1520-0442(2001)014​<3433:EOMAAO>2.0.CO;2.
  59. Våge, K., R.S. Pickart, G.W.K. Moore, and M.H. Ribergaard. 2008. Winter mixed layer development in the central Irminger Sea: The effect of strong, intermittent wind events. Journal of Physical Oceanography 38(3):541–565, https://doi.org/10.1175/2007JPO3678.1.
  60. Våge, K., R.S. Pickart, V. Thierry, G. Reverdin, C.M. Lee, B. Petrie, T.A. Agnew, A. Wong, and M.H. Ribergaard. 2009. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nature Geoscience 2:67–72, https://doi.org/10.1038/ngeo382.
  61. van Aken, H.M., M.F. de Jong, and I. Yashayaev. 2011. Decadal and multi-decadal variability of Labrador Sea Water in the north-western North Atlantic Ocean derived from tracer distributions: Heat budget, ventilation, and advection. Deep Sea Research Part I 58:505­–523, https://doi.org/10.1016/​j.dsr.2011.02.008.
  62. van Sebille, E., M.O. Baringer, W.E. Johns, C.S. Meinen, L.M. Beal, M.F. de Jong, and H.M. van Aken. 2011. Propagation pathways of classical Labrador Sea water from its source region to 26°N. Journal of Geophysical Research 116, C12027, https://doi.org/10.1029/2011JC007171.
  63. Willis, J.K. 2010. Can in situ floats and satellite altimeters detect long-term changes in Atlantic ocean overturning? Geophysical Research Letters 37, L06602, https://doi.org/10.1029/2010GL042372.
  64. Wouters, B., A. Martin-Español, V. Helm, T. Flament, J.M. van Wessem, S.R.M. Ligtenberg, M.R. van den Broeke, and J.L. Bamber. 2015. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348(6237):899–903, https://doi.org/10.1126/science.aaa5727.
  65. Wunsch, C., and P. Heimbach. 2013. Two decades of the Atlantic meridional overturning circulation: Anatomy, variations, extremes, prediction, and overcoming its limitations. Journal of Climate 26(18):7,167–7,186, https://doi.org/10.1175/JCLI-D-12-00478.1.
  66. Yang, Q., T.H. Dixon, P.G. Myers, J. Bonin, D. Chambers, and M.R. van den Broeke. 2016. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nature Communications 7, 10525, https://doi.org/10.1038/ncomms10525.
  67. Yashayaev, I. 2007. Hydrographic changes in the Labrador Sea, 1960–2005. Progress in Oceanography 73:242–276, https://doi.org/​10.1016/j.pocean.2007.04.015.
  68. Zhang, R. 2010. Latitudinal dependence of Atlantic meridional overturning circulation variations. Geophysical Research Letters 37, L16703, https://doi.org/10.1029/2010GL044474.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.