Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 01

View Issue TOC
Volume 27, No. 1
Pages 50 - 61

OpenAccess

GEOTRACES: Changing the Way We Explore Ocean Chemistry

By Robert F. Anderson , Edward Mawji , Gregory A. Cutter , Christopher I. Measures , and Catherine Jeandel  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

GEOTRACES is an international study of the marine biogeochemical cycles of trace elements and their isotopes (TEIs), designed by marine geochemists to accelerate TEI research under a global program. Combining ocean sections, process studies, data synthesis, and modeling, GEOTRACES will identify and quantify the processes that supply TEIs at ocean boundaries as well as the physical and biological processes that redistribute TEIs within and between ocean basins. Constraining processes that remove TEIs from the ocean will enable complete mass budgets to be generated. Anticipated beneficiaries of GEOTRACES products include scientists studying the sustained health of marine ecosystems and their sensitivity to changes in micronutrient supply; paleoceanographers seeking to reconstruct past changes in the ocean environment, including the ocean’s role in climate variability; and scientists and policymakers who seek a better understanding of the transport and fate of contaminants in the ocean. It is hoped that the experiences described here will provide helpful guidance to scientists in other disciplines who wish to advance their fields by organizing coordinated research programs.

Citation

Anderson, R.F., E. Mawji, G.A. Cutter, C.I. Measures, and C. Jeandel. 2014. GEOTRACES: Changing the way we explore ocean chemistry. Oceanography 27(1):50–61, https://doi.org/10.5670/oceanog.2014.07.

References
    Bell, J., J. Betts, and E. Boyle. 2002. MITESS: A moored in situ trace element serial sampler for deep-sea moorings. Deep Sea Research Part I 49(11):2,103–2,118, https://doi.org/10.1016/S0967-0637(02)00126-7.
  1. Boyd, P.W., and M.J. Ellwood. 2010. The biogeochemical cycle of iron in the ocean. Nature Geoscience 3(10):675–682, https://doi.org/10.1038/ngeo964.
  2. Boyd, P.W., R. Strzepek, S. Chiswell, H. Chang, J.M. DeBruyn, M. Ellwood, S. Keenan, A.L. King, E.W. Maas, S. Nodder, and others. 2012. Microbial control of diatom bloom dynamics in the open ocean. Geophysical Research Letters 39, L18601, https://doi.org/10.1029/2012GL053448.
  3. Boyle, E.A., J.-M. Lee, Y. Echegoyen, A. Noble, S. Moos, G. Carrasco, N. Zhao, R. Kayser, J. Zhang, T. Gamo, H. Obata, and K. Norisuye. 2014. Anthropogenic lead emissions in the ocean: The evolving global experiment. Oceanography 27(1):69–75, https://doi.org/10.5670/oceanog.2014.10.
  4. Broecker, W.S., and T.H. Peng. 1982. Tracers in the Sea. Eldigio Press, Palisades, New York, 690 pp.
  5. Bruland, K.W., and M.C. Lohan. 2003. Controls of trace metals in seawater. Pp. 23–47 in The Oceans and Marine Geochemistry. H. Elderfield, ed., Elsevier, Oxford.
  6. Conway, T.M., A.D. Rosenberg, J.F. Adkins, and S.G. John. 2013. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Analytica Chimica Acta 793:44–52, https://doi.org/10.1016/j.aca.2013.07.025.
  7. Cutter, G.A., and K.W. Bruland. 2012. Rapid and noncontaminating sampling system for trace elements in global ocean surveys. Limnology and Oceanography: Methods 10:425–436, https://doi.org/10.4319/lom.2012.10.425.
  8. de Baar, H.J.W., K.R. Timmermans, P. Laan, H.H. De Porto, S. Ober, J.J. Blom, M.C. Bakker, J. Schilling, G. Sarthou, M.G. Smit, and M. Klunder. 2008. Titan: A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program. Marine Chemistry 111:4–21, https://doi.org/10.1016/j.marchem.2007.07.009.
  9. Henderson, G.M. 2002. New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203:1–13, https://doi.org/10.1016/S0012-821X(02)00809-9.
  10. Hunter, C.N., R.M. Gordon, S.E. Fitzwater, and K.H. Coale. 1996. A rosette system for the collection of trace metal clean seawater. Limnology and Oceanography 41(6):1,367–1,372, https://doi.org/10.4319/lo.1996.41.6.1367.
  11. Klunder, M.B., P. Laan, R. Middag, H.J.W. De Baar, and J.C. van Ooijen. 2011. Dissolved iron in the Southern Ocean (Atlantic sector). Deep Sea Research Part II 58:2,678–2,694, https://doi.org/10.1016/j.dsr2.2010.10.042.
  12. Lagerström, M.E., M.P. Field, M. Séguret, L. Fischer, S. Hann, and R.M. Sherrell. 2013. Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: Application to the GEOTRACES program. Marine Chemistry 155:71–80, https://doi.org/10.1016/j.marchem.2013.06.001.
  13. Lamborg, C., K. Bowman, C. Hammerschmidt, C. Gilmour, K. Munson, N. Selin, and C.-M. Tseng. 2014. Mercury in the Anthropocene ocean. Oceanography 27(1):76–87, https://doi.org/10.5670/oceanog.2014.11.
  14. Lamborg, C.H., W.F. Fitzgerald, J. O’Donnell, and T. Torgersen. 2002. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta 66:1,105–1,118, https://doi.org/10.1016/S0016-7037(01)00841-9.
  15. Measures, C.I., W.M. Landing, M.T. Brown, and C.S. Buck. 2008. A commercially available rosette system for trace metal-clean sampling. Limnology and Oceanography: Methods 6:384–394, https://doi.org/10.4319/lom.2008.6.384.
  16. Middag, R., H.J.W. de Baar, P. Laan, P.H. Cai, and J.C. van Ooijen. 2011b. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Research Part II 58:2,661–2,677, https://doi.org/10.1016/j.dsr2.2010.10.043.
  17. Middag, R., C. van Slooten, H.J.W. de Baar, and P. Laan. 2011a. Dissolved aluminium in the Southern Ocean. Deep Sea Research Part II 58:2,647–2,660, https://doi.org/10.1016/j.dsr2.2011.03.001.
  18. Morel, F.M.M., A.J. Milligan, and M.A. Saito. 2003. Marine bioinorganic chemistry: The role of trace metals in the oceanic cycles of major nutrients. Pp. 113–143 in The Oceans and Marine Geochemistry. H. Elderfield, ed., Elsevier, Oxford.
  19. Morel, F.M.M., and N.M. Price. 2003. The biogeochemical cycles of trace metals in the oceans. Science 300:944–947, https://doi.org/10.1126/science.1083545.
  20. Schaule, B.K., and C.C. Patterson. 1981. Lead concentrations in the Northeast Pacific: Evidence for global anthropogenic perturbations. Earth and Planetary Science Letters 54:97–116, https://doi.org/10.1016/0012-821X(81)90072-8.
  21. Sohrin, Y., S. Urushihara, S. Nakatsuka, T. Kono, E. Higo, T. Minami, K. Norisuye, and S. Umetani. 2008. Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelating resin. Analytical Chemistry 80:6,267–6,273, https://doi.org/10.1021/ac800500f.
  22. Sunda, W.G., and S.A. Huntsman. 1998. Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems. Science of The Total Environment 219(2-3):165–181, https://doi.org/10.1016/S0048-9697(98)00226-5.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.