Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 04

View Issue TOC
Volume 27, No. 4
Pages 26 - 41


Early Life History and Fisheries Oceanography: New Questions in a Changing World

By Joel K. Llopiz , Robert K. Cowen, Martha J. Hauff , Rubao Ji , Philip L. Munday , Barbara A. Muhling, Myron A. Peck, David E. Richardson , Susan Sogard , and Su Sponaugle 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

In the past 100 years since the birth of fisheries oceanography, research on the early life history of fishes, particularly the larval stage, has been extensive, and much progress has been made in identifying the mechanisms by which factors such as feeding success, predation, or dispersal can influence larval survival. However, in recent years, the study of fish early life history has undergone a major and, arguably, necessary shift, resulting in a growing body of research aimed at understanding the consequences of climate change and other anthropogenically induced stressors. Here, we review these efforts, focusing on the ways in which fish early life stages are directly and indirectly affected by increasing temperature; increasing CO2 concentrations, and ocean acidification; spatial, temporal, and magnitude changes in secondary production and spawning; and the synergistic effects of fishing and climate change. We highlight how these and other factors affect not only larval survivorship, but also the dispersal of planktonic eggs and larvae, and thus the connectivity and replenishment of fish subpopulations. While much of this work is in its infancy and many consequences are speculative or entirely unknown, new modeling approaches are proving to be insightful by predicting how early life stage survival may change in the future and how such changes will impact economically and ecologically important fish populations.


Llopiz, J.K., R.K. Cowen, M.J. Hauff, R. Ji, P.L. Munday, B.A. Muhling, M.A. Peck, D.E. Richardson, S. Sogard, and S. Sponaugle. 2014. Early life history and fisheries oceanography: New questions in a changing world. Oceanography 27(4):26–41, https://doi.org/10.5670/oceanog.2014.84.


Allan, B.J., P. Domenici, M.I. McCormick, S.-A. Watson, and P.L. Munday. 2013. Elevated CO2 affects predator-prey interactions through altered performance. PLoS One 8(3):e58520, https://doi.org/10.1371/journal.pone.0058520.

Allan, B.J., G.M. Miller, M.I. McCormick, P. Domenici, and P.L. Munday. 2014. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proceedings of the Royal Society B, https://doi.org/10.1098/rspb.2013.2179.

Anderson, J.T. 1988. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. Journal of Northwest Atlantic Fishery Science 8:55–66, http://journal.nafo.int/J08/anderson.pdf.

Arrigo, K.R., G. van Dijken, and S. Pabi. 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters 35, L19603, https://doi.org/10.1029/2008GL035028.

Asch, R.G. 2013. Interannual-to-decadal changes in phytoplankton phenology, fish spawning habitat, and larval fish phenology. PhD Dissertation, University of California, San Diego.

Astthorsson, O.S., H. Valdimarsson, A. Gudmunds-dottir, and G.J. Óskarsson. 2012. Climate-related variations in the occurrence and distribution of mackerel (Scomber scombrus) in Icelandic waters. ICES Journal of Marine Science 69:1,289–1,297, https://doi.org/10.1093/icesjms/fss084.

Auad, G., A. Miller, and E. Di Lorenzo. 2006. Long-term forecast of oceanic conditions off California and their biological implications. Journal of Geophysical Research 111, C09008, https://doi.org/10.1029/2005JC003219.

Ayata, S.-D., P. Lazure, and É. Thiébaut. 2010. How does the connectivity between populations mediate range limits of marine invertebrates? A case study of larval dispersal between the Bay of Biscay and the English Channel (Northeast Atlantic). Progress in Oceanography 87:18–36, https://doi.org/10.1016/j.pocean.2010.09.022.

Bailey, K.M., and E.D. Houde. 1989. Predation on eggs and larvae of marine fishes and the recruitment problem. Advances in Marine Biology 25:1–83.

Bakun, A. 1990. Global climate change and intensification of coastal ocean upwelling. Science 247:198–201, https://doi.org/10.1126/science.247.4939.198.

Bakun, A., D.B. Field, A. Redondo-Rodriguez, and S.J. Weeks. 2010. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Global Change Biology 16:1,213–1,228, https://doi.org/10.1111/j.1365-2486.2009.02094.x.

Baumann, H., S.C. Talmage, and C.J. Gobler. 2012. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change 2:38–41, https://doi.org/10.1038/nclimate1291.

Beaugrand, G., K.M. Brander, J.A. Lindley, S. Souissi, and P.C. Reid. 2003. Plankton effect on cod recruitment in the North Sea. Nature 426:661–664, https://doi.org/10.1038/nature02164.

Behrenfeld, M.J., R.T. O’Malley, D.A. Siegel, C.R. McClain, J.L. Sarmiento, G.C. Feldman, A.J. Milligan, P.G. Falkowski, R.M. Letelier, and E.S. Boss. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:752–755, https://doi.org/10.1038/nature05317.

Berkeley, S.A., M.A. Hixon, R.J. Larson, and M.S. Love. 2004. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29:23–32.

Bignami, S., I.C. Enochs, D.P. Manzello, S. Sponaugle, and R.K. Cowen. 2013a. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function. Proceedings of the National Academy of Sciences of the United States of America 110:7,366–7,370, https://doi.org/10.1073/pnas.1301365110.

Bignami, S., S. Sponaugle, and R.K. Cowen. 2013b. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Global Change Biology 19:996–1,006, https://doi.org/10.1111/gcb.12133.

Bindoff, N., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quere, S. Levitus, Y. Nojiri, and others. 2007. Observations: Oceanic climate change and sea level. Pp. 385–428 in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Avery, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, UK, and New York, NY.

Bopp, L., P. Monfray, O. Aumont, J.L. Dufresne, H. Le Treut, G. Madec, L. Terray, and J.C. Orr. 2001. Potential impact of climate change on marine export production. Global Biogeochemical Cycles 15:81–99, https://doi.org/10.1029/1999GB001256.

Boyce, D.G., M.R. Lewis, and B. Worm. 2010. Global phytoplankton decline over the past century. Nature 466:591–596, https://doi.org/10.1038/nature09268.

Brauner, C., and D. Baker. 2009. Patterns of acid–base regulation during exposure to hypercarbia in fishes. Pp. 43–63 in Cardio-Respiratory Control in Vertebrates. M.L. Glass and S.C. Wood, eds, Springer.

Brochier, T., V. Echevin, J. Tam, A. Chaigneau, K. Goubanova, and A. Bertrand. 2013. Climate change scenarios experiments predict a future reduction in small pelagic fish recruitment in the Humboldt Current system. Global Change Biology 19:1,841–1,853, https://doi.org/10.1111/gcb.12184.

Browman, H.I. 2014. Commemorating 100 years since Hjort’s 1914 treatise on fluctuations in the great fisheries of northern Europe: Where we have been, where we are, and where we are going. ICES Journal of Marine Science 71:1,989–1,992, https://doi.org/10.1093/icesjms/fsu159.

Carscadden, J., B. Nakashima, and K. Frank. 1997. Effects of fish length and temperature on the timing of peak spawning in capelin (Mallotus villosus). Canadian Journal of Fisheries and Aquatic Sciences 54:781–787, https://doi.org/10.1139/f96-331.

Chambers, R., A. Candelmo, E. Habeck, M. Poach, D. Wieczorek, K. Cooper, C. Greenfield, and B. Phelan. 2014. Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification. Biogeosciences 11:1,613–1,626, https://doi.org/10.5194/bg-11-1613-2014.

Checkley, D.M., A.G. Dickson, M. Takahashi, J.A. Radich, N. Eisenkolb, and R. Asch. 2009. Elevated CO2 enhances otolith growth in young fish. Science 324:1,683, https://doi.org/10.1126/science.1169806.

Cheung, W.W., V.W. Lam, J.L. Sarmiento, K. Kearney, R. Watson, and D. Pauly. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10:235–251, https://doi.org/10.1111/j.1467-2979.2008.00315.x.

Chivers, D.P., M.I. McCormick, G.E. Nilsson, P.L. Munday, S.A. Watson, M.G. Meekan, M.D. Mitchell, K.C. Corkill, and M.C. Ferrari. 2014. Impaired learning of predators and lower prey survival under elevated CO2: A consequence of neurotransmitter interference. Global Change Biology 20:515–522, https://doi.org/10.1111/gcb.12291.

Chung, W.-S., N.J. Marshall, S.-A. Watson, P.L. Munday, and G.E. Nilsson. 2014. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. Journal of Experimental Biology 217:323–326, https://doi.org/10.1242/jeb.092478.

Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, and others. 2013. Long-term climate change: Projections, commitments and irreversibility. Chapter 12 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, UK, and New York, NY.

Cowen, R.K., and S. Sponaugle. 2009. Larval dispersal and marine population connectivity. Annual Review of Marine Science 1:443–466, https://doi.org/10.1146/annurev.marine.010908.163757.

Cushing, D.H. 1974. The natural regulation of fish populations. Pp. 399–412 in Sea Fisheries Research. F.R. Harden-Jones, ed., Elek Science, London.

Cushing, D.H. 1975. Marine Ecology and Fisheries. Cambridge University Press, 278 pp.

Cushing, D.H. 1990. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Advances in Marine Biology 26:249–293.

Devine, B., P. Munday, and G. Jones. 2012. Rising CO2 concentrations affect settlement behaviour of larval damselfishes. Coral Reefs 31:229–238, https://doi.org/10.1007/s00338-011-0837-0.

Dixson, D.L., P.L. Munday, and G.P. Jones. 2010. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecology Letters 13:68–75, https://doi.org/10.1111/j.1461-0248.2009.01400.x.

Domenici, P., B. Allan, M.I. McCormick, and P.L. Munday. 2012. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biology Letters 8:78–81, https://doi.org/10.1098/rsbl.2011.0591.

Donelson, J., P. Munday, M. McCormick, N.W. Pankhurst, and P. Pankhurst. 2010. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Marine Ecology Progress Series 401:233–243, https://doi.org/10.3354/meps08366.

Doney, S.C. 2006. Oceanography: Plankton in a warmer world. Nature 444:695–696, https://doi.org/10.1038/444695a.

Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–192, https://doi.org/10.1146/annurev.marine.010908.163834.

Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, and N. Knowlton. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4:11–37, https://doi.org/10.1146/annurev-marine-041911-111611.

Dulvy, N.K., S.I. Rogers, S. Jennings, V. Stelzenmüller, S.R. Dye, and H.R. Skjoldal. 2008. Climate change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas. Journal of Applied Ecology 45:1,029–1,039, https://doi.org/10.1111/j.1365-2664.2008.01488.x.

Durant, J.M., D.O. Hjermann, T. Anker-Nilssen, G. Beaugrand, A. Mysterud, N. Pettorelli, and N.C. Stenseth. 2005. Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecology Letters 8:952–958, https://doi.org/10.1111/j.1461-0248.2005.00798.x.

Durant, J.M., D.Ø. Hjermann, G. Ottersen, and N.C. Stenseth. 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33:271–283, https://doi.org/10.3354/cr033271.

Edwards, M., and A.J. Richardson. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884, https://doi.org/10.1038/nature02808.

Engelhard, G.H., and M. Heino. 2006. Climate change and condition of herring (Clupea harengus) explain long-term trends in extent of skipped reproduction. Oecologia 149:593–603, https://doi.org/10.1007/s00442-006-0483-3.

Esbaugh, A.J., R. Heuer, and M. Grosell. 2012. Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta. Journal of Comparative Physiology B 182:921–934.

Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36-47, https://doi.org/10.5670/oceanog.2009.95.

Ferrari, M.C., R.P. Manassa, D.L. Dixson, P.L. Munday, M.I. McCormick, M.G. Meekan, A. Sih, and D.P. Chivers. 2012. Effects of ocean acidification on learning in coral reef fishes. PLoS One 7(2):e31478, https://doi.org/10.1371/journal.pone.0031478.

Ferrari, M.C., M.I. McCormick, P.L. Munday, M.G. Meekan, D.L. Dixson, O. Lonnstedt, and D.P. Chivers. 2011. Putting prey and predator into the CO2 equation: Qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecology Letters 14:1,143–1,148, https://doi.org/10.1111/j.1461-0248.2011.01683.x.

Fogarty, M., L. Incze, K. Hayhoe, D. Mountain, and J. Manning. 2008. Potential climate change impacts on Atlantic cod (Gadus morhua) off the northeastern USA. Mitigation and Adaptation Strategies for Global Change 13:453–466, https://doi.org/10.1007/s11027-007-9131-4.

Francis, R.C., M.A. Hixon, M.E. Clarke, S.A. Murawski, and S. Ralston. 2007. Ten commandments for ecosystem-based fisheries scientists. Fisheries 32:217–233, https://doi.org/10.1577/1548-8446(2007)32[217:TCFBFS]2.0.CO;2.

Franke, A., and C. Clemmesen. 2011. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences Discussions 8:7,097–7,126, https://doi.org/10.5194/bg-8-3697-2011.

Frommel, A.Y., R. Maneja, D. Lowe, A.M. Malzahn, A.J. Geffen, A. Folkvord, U. Piatkowski, T.B. Reusch, and C. Clemmesen. 2012. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nature Climate Change 2:42–46, https://doi.org/10.1038/nclimate1324.

Frommel, A.Y., A. Schubert, U. Piatkowski, and C. Clemmesen. 2013. Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Marine Biology 160:1,825–1,834, https://doi.org/10.1007/s00227-011-1876-3.

Fuiman, L.A. 1986. Burst-swimming performance of larval zebra danios and the effects of diel temperature fluctuations. Transactions of the American Fisheries Society 115:143–148, https://doi.org/10.1577/1548-8659(1986)115<143:BPOLZD>2.0.CO;2.

García-Reyes, M., and J. Largier. 2010. Observations of increased wind-driven coastal upwelling off central California. Journal of Geophysical Research 115, C04011, https://doi.org/10.1029/2009JC005576.

Gemmell, B.J., J. Sheng, and E.J. Buskey. 2013. Compensatory escape mechanism at low Reynolds number. Proceedings of the National Academy of Sciences of the United States of America 110:4,661–4,666, https://doi.org/10.1073/pnas.1212148110.

Genner, M.J., N.C. Halliday, S.D. Simpson, A.J. Southward, S.J. Hawkins, and D.W. Sims. 2010a. Temperature-driven phenological changes within a marine larval fish assemblage. Journal of Plankton Research 32:699–708, https://doi.org/10.1093/plankt/fbp082.

Genner, M.J., D.W. Sims, A.J. Southward, G.C. Budd, P. Masterson, M. McHugh, P. Rendle, E.J. Southall, V.J. Wearmouth, and S.J. Hawkins. 2010b. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Global Change Biology 16:517–527, https://doi.org/10.1111/j.1365-2486.2009.02027.x.

Gerber, L.R., M.D.M. Mancha-Cisneros, M.I. O’Connor, and E.R. Selig. 2014. Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere 5(3):art33, https://doi.org/10.1890/ES13-00336.1.

Guisan, A., and N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135:147–186, https://doi.org/10.1016/S0304-3800(00)00354-9.

Hamilton, T.J., A. Holcombe, and M. Tresguerres. 2014. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proceedings of the Royal Society B, https://doi.org/10.1098/rspb.2013.2509.

Hare, J.A. 2014. The future of fisheries oceanography lies in the pursuit of multiple hypotheses. ICES Journal of Marine Science 71:2,343–2,356, https://doi.org/10.1093/icesjms/fsu018.

Hare, J.A., M.A. Alexander, M.J. Fogarty, E.H. Williams, and J.D. Scott. 2010. Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecological Applications 20:452–464, https://doi.org/10.1890/08-1863.1.

Hare, J.A., M.J. Wuenschel, and M.E. Kimball. 2012. Projecting range limits with coupled thermal tolerance-climate change models: An example based on gray snapper (Lutjanus griseus) along the US East Coast. PLoS One 7(12):e52294, https://doi.org/10.1371/journal.pone.0052294.

Hays, G.C., A.J. Richardson, and C. Robinson. 2005. Climate change and marine plankton. Trends in Ecology & Evolution 20:337–344, https://doi.org/10.1016/j.tree.2005.03.004.

Heath, M.R., P.A. Kunzlik, A. Gallego, S.J. Holmes, and P.J. Wright. 2008. A model of meta-population dynamics for North Sea and West of Scotland cod: The dynamic consequences of natal fidelity. Fisheries Research 93:92–116, https://doi.org/10.1016/j.fishres.2008.02.014.

Heuer, R.M., and M. Grosell. 2014. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 307:R1,061–R1,084, https://doi.org/10.1152/ajpregu.00064.2014.

Hidalgo, M., Y. Gusdal, G. Dingsør, D. Hjermann, G. Ottersen, L. Stige, A. Melsom, and N. Stenseth. 2012. A combination of hydrodynamical and statistical modelling reveals non-stationary climate effects on fish larvae distributions. Proceedings of the Royal Society B 279:275–283, https://doi.org/10.1098/rspb.2011.0750.

Hixon, M.A., D.W. Johnson, and S.M. Sogard. 2014. BOFFFFs: On the importance of conserving old-growth age structure in fishery populations. ICES Journal of Marine Science 71:2,171–2,185, https://doi.org/10.1093/icesjms/fst200.

Hjort, J. 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapports et Proces-verbaux des Reunions, Conseil International pour l’Exploration de la Mer 20:1–228.

Hjort, J. 1926. Fluctuations in the year classes of important food fishes. Journal Du Conseil 1(1):5–38.

Houde, E.D. 1987. Fish early life dynamics and recruitment variability. Pp. 17–29 in American Fisheries Society Symposium Series, vol. 2. R.D. Hoyt, ed., American Fisheries Society.

Houde, E.D. 1989. Comparative growth, mortality, and energetics of marine fish larvae: Temperature and implied latitudinal effects. Fishery Bulletin 87:471–495, http://fishbull.noaa.gov/873/houde.pdf.

Houde, E.D. 1997. Patterns and trends in larval-stage growth and mortality of teleost fish. Journal of Fish Biology 51:52–83, https://doi.org/10.1111/j.1095-8649.1997.tb06093.x.

Houde, E.D. 2008. Emerging from Hjort’s shadow. Journal of the Northwest Atlantic Fishery Science 41:53–70, https://doi.org/10.2960/J.v41.m634.

Hsieh, C.H., H.J. Kim, W. Watson, E. Di Lorenzo, and G. Sugihara. 2009. Climate-driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Global Change Biology 15:2,137–2,152, https://doi.org/10.1111/j.1365-2486.2009.01875.x.

Hsieh, C.H., C.S. Reiss, R.P. Hewitt, and G. Sugihara. 2008. Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Canadian Journal of Fisheries and Aquatic Sciences 65(5):947–961.

Hsieh, C.H., C.S. Reiss, J.R. Hunter, J.R. Beddington, R.M. May, and G. Sugihara. 2006. Fishing elevates variability in the abundance of exploited species. Nature 443:859–862, https://doi.org/10.1038/nature05232.

Huebert, K.B., R.K. Cowen, and S. Sponaugle. 2011. Vertical migrations of reef fish larvae in the Straits of Florida and effects on larval transport. Limnology and Oceanography 56:1,653–1,666, https://doi.org/10.4319/lo.2011.56.5.1653.

Huebert, K.B., and M.A. Peck. 2014. A day in the life of fish larvae: Modeling foraging and growth using Quirks. PLoS One 9(6):e98205, https://doi.org/10.1371/journal.pone.0098205.

Hunt, G.L. Jr., and P.J. Stabeno. 2002. Climate change and the control of energy flow in the southeastern Bering Sea. Progress in Oceanography 55:5–22, https://doi.org/10.1016/S0079-6611(02)00067-8.

Huret, M., P. Petitgas, and M. Woillez. 2010. Dispersal kernels and their drivers captured with a hydrodynamic model and spatial indices: A case study on anchovy (Engraulis encrasicolus) early life stages in the Bay of Biscay. Progress in Oceanography 87:6–17, https://doi.org/10.1016/j.pocean.2010.09.023.

Hurst, T.P., E.R. Fernandez, and J.T. Mathis. 2013. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science 70:812–822, https://doi.org/10.1093/icesjms/fst053.

Hurst, T.P., E.R. Fernandez, J.T. Mathis, J.A. Miller, C.M. Stinson, and E.F. Ahgeak. 2012. Resiliency of juvenile walleye pollock to projected levels of ocean acidification. Aquatic Biology 17:247–259, https://doi.org/10.3354/ab00483.

Hutchings, J.A., and R.A. Myers. 1994. Timing of cod reproduction: Interannual variability and the influence of temperature. Marine Ecology Progress Series 108:21–32.

Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415–427.

Iles, T.D., and M. Sinclair. 1982. Atlantic herring: Stock discreteness and abundance. Science 215:627–633, https://doi.org/10.1126/science.215.4533.627.

Ji, R., M. Edwards, D.L. Mackas, J.A. Runge, and A.C. Thomas. 2010. Marine plankton phenology and life history in a changing climate: Current research and future directions. Journal of Plankton Research 32:1,355–1,368, https://doi.org/10.1093/plankt/fbq062.

Ji, R., M. Jin, and Ø. Varpe. 2013. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Global Change Biology 19:734–741, https://doi.org/10.1111/gcb.12074.

Kahru, M., V. Brotas, M. Manzano-Sarabia, and B. Mitchell. 2011. Are phytoplankton blooms occurring earlier in the Arctic? Global Change Biology 17:1,733–1,739, https://doi.org/10.1111/j.1365-2486.2010.02312.x.

Kendall, M.S., M. Poti, T.T. Wynne, B.P. Kinlan, and L.B. Bauer. 2013. Consequences of the life history traits of pelagic larvae on interisland connectivity during a changing climate. Marine Ecology Progress Series 489:43–59, https://doi.org/10.3354/meps10432.

King, J.R., V.N. Agostini, C.J. Harvey, G.A. McFarlane, M.G. Foreman, J.E. Overland, E. Di Lorenzo, N.A. Bond, and K.Y. Aydin. 2011. Climate forcing and the California Current ecosystem. ICES Journal of Marine Science 68:1,199–1,216, https://doi.org/10.1093/icesjms/fsr009.

Kirtman, B., S.B. Power, J.A. Adedoyin, G.J. Boer, R. Bojariu, I. Camilloni, F.J. Doblas-Reyes, A.M. Fiore, M. Kimoto, G.A. Meehl, and others. 2013. Near-term climate change: Projections and predictability. Chapter 11 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, UK, and New York, NY.

Kristiansen, T., C. Stock, K.F. Drinkwater, and E.N. Curchitser. 2014. Mechanistic insights into the effects of climate change on larval cod. Global Change Biology 20:1,559–1,584, https://doi.org/10.1111/gcb.12489.

Last, P.R., W.T. White, D.C. Gledhill, A.J. Hobday, R. Brown, G.J. Edgar, and G. Pecl. 2011. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Global Ecology and Biogeography 20:58–72, https://doi.org/10.1111/j.1466-8238.2010.00575.x.

Leggett, W.C., and E. Deblois. 1994. Recruitment in marine fishes: Is it regulated by starvation and predation in the egg and larval stages? Netherlands Journal of Sea Research 32:119–134, https://doi.org/10.1016/0077-7579(94)90036-1.

Lehodey, P., I. Senina, J. Sibert, L. Bopp, B. Calmettes, J. Hampton, and R. Murtugudde. 2010. Preliminary forecasts of Pacific bigeye tuna population trends under the A2 IPCC scenario. Progress in Oceanography 86:302–315, https://doi.org/10.1016/j.pocean.2010.04.021.

Lett, C., S.-D. Ayata, M. Huret, and J.-O. Irisson. 2010. Biophysical modelling to investigate the effects of climate change on marine population dispersal and connectivity. Progress in Oceanography 87:106–113, https://doi.org/10.1016/j.pocean.2010.09.005.

Liu, Y., S.K. Lee, B.A. Muhling, J.T. Lamkin, and D.B. Enfield. 2012. Significant reduction of the Loop Current in the 21st century and its impact on the Gulf of Mexico. Journal of Geophysical Research 117, C05039, https://doi.org/10.1029/2011JC007555.

Llopiz, J.K. 2013. Latitudinal and taxonomic patterns in the feeding ecologies of fish larvae: A literature synthesis. Journal of Marine Systems 109–110:69–77, https://doi.org/10.1016/j.jmarsys.2012.05.002.

Llopiz, J.K., and R.K. Cowen. 2009. Variability in the trophic role of coral reef fish larvae in the oceanic plankton. Marine Ecology Progress Series 381:259–272, https://doi.org/10.3354/meps07957.

Llopiz, J.K., D.E. Richardson, A. Shiroza, S.L. Smith, and R.K. Cowen. 2010. Distinctions in the diets and distributions of larval tunas and the important role of appendicularians. Limnology and Oceanography 55:983–996, https://doi.org/10.4319/lo.2010.55.3.0983.

Longhurst, A. 2002. Murphy’s law revisited: Longevity as a factor in recruitment to fish populations. Fisheries Research 56:125–131, https://doi.org/10.1016/S0165-7836(01)00351-4.

Mackas, D., W. Greve, M. Edwards, S. Chiba, K. Tadokoro, D. Eloire, M. Mazzocchi, S. Batten, A. Richardson, and C. Johnson. 2012. Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology. Progress in Oceanography 97:31–62, https://doi.org/10.1016/j.pocean.2011.11.005.

Maneja, R., A. Frommel, A. Geffen, A. Folkvord, U. Piatkowski, M. Chang, and C. Clemmesen. 2013. Effects of ocean acidification on the calcification of otoliths of larval Atlantic cod Gadus morhua. Marine Ecology Progress Series 477:251–258, https://doi.org/10.3354/meps10146.

Marteinsdottir, G., and K. Thorarinsson. 1998. Improving the stock-recruitment relationship in Icelandic cod (Gadus morhua) by including age diversity of spawners. Canadian Journal of Fisheries and Aquatic Sciences 55:1,372–1,377, https://doi.org/10.1139/f98-035.

McCormick, M.I., S.-A. Watson, and P.L. Munday. 2013. Ocean acidification reverses competition for space as habitats degrade. Scientific Reports 3:3,280, https://doi.org/10.1038/srep03280.

McLeod, I.M., J.L. Rummer, T.D. Clark, G.P. Jones, M.I. McCormick, A.S. Wenger, and P.L. Munday. 2013. Climate change and the performance of larval coral reef fishes: The interaction between temperature and food availability. Conservation Physiology 1(1):cot024, https://doi.org/10.1093/conphys/cot024.

McQuatters-Gollop, A., P.C. Reid, M. Edwards, P.H. Burkill, C. Castellani, S. Batten, W. Gieskes, D. Beare, R.R. Bidigare, and E. Head. 2011. Is there a decline in marine phytoplankton? Nature 472:E6–E7, https://doi.org/10.1038/nature09950.

Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedling-stein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, and others 2007. Global climate projections. Pp. 747–845 in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Avery, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, UK, and New York, NY.

Miller, G.M., S.-A. Watson, J.M. Donelson, M.I. McCormick, and P.L. Munday. 2012. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change 2:858–861, https://doi.org/10.1038/nclimate1599.

Miller, T.J. 2007. Contribution of individual-based coupled physical-biological models to understanding recruitment in marine fish populations. Marine Ecology Progress Series 347:127–138, https://doi.org/10.3354/meps06973.

Morán, X.A.G., Á. López-Urrutia, A. Calvo-Díaz, and W.K. Li. 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16:1,137–1,144, https://doi.org/10.1111/j.1365-2486.2009.01960.x.

Muhling, B.A., S.-K. Lee, J.T. Lamkin, and Y. Liu. 2011. Predicting the effects of climate change on bluefin tuna (Thunnus thynnus) spawning habitat in the Gulf of Mexico. ICES Journal of Marine Science 68:1,051–1,062, https://doi.org/10.1093/icesjms/fsr008.

Munday, P.L., A.J. Cheal, D.L. Dixson, J.L. Rummer, and K.E. Fabricius. 2014. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Climate Change 4:487–492, https://doi.org/10.1038/nclimate2195.

Munday, P.L., D.L. Dixson, J.M. Donelson, G.P. Jones, M.S. Pratchett, G.V. Devitsina, and K.B. Døving. 2009a. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences of the United States of America 106:1,848–1,852, https://doi.org/10.1073/pnas.0809996106.

Munday, P.L., D.L. Dixson, M.I. McCormick, M. Meekan, M.C. Ferrari, and D.P. Chivers. 2010. Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 107:12,930–12,934, https://doi.org/10.1073/pnas.1004519107.

Munday, P.L., J.M. Donelson, D.L. Dixson, and G.G. Endo. 2009b. Effects of ocean acidification on the early life history of a tropical marine fish. Proceedings of the Royal Society B 276:3,275–3,283, https://doi.org/10.1098/rspb.2009.0784.

Munday, P.L., V. Hernaman, D.L. Dixson, and S.R. Thorrold. 2011. Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8:1,631–1,641, https://doi.org/10.5194/bg-8-1631-2011.

Munday, P., J. Leis, J. Lough, C. Paris, M. Kingsford, M. Berumen, and J. Lambrechts. 2009c. Climate change and coral reef connectivity. Coral Reefs 28:379–395, https://doi.org/10.1007/s00338-008-0461-9.

Munday, P.L., M.S. Pratchett, D.L. Dixson, J.M. Donelson, G.G. Endo, A.D. Reynolds, and R. Knuckey. 2013. Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Marine Biology 160:2,137–2,144, https://doi.org/10.1007/s00227-012-2111-6.

Murray, C.S., A. Malvezzi, C.J. Gobler, and H. Baumann. 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series 504:1–11, https://doi.org/10.3354/meps10791.

Myers, R.A. 1998. When do environment–recruitment correlations work? Reviews in Fish Biology and Fisheries 8:285–305, https://doi.org/10.1023/A:1008828730759.

Nilsson, G.E., D.L. Dixson, P. Domenici, M.I. McCormick, C. Sørensen, S.-A. Watson, and P.L. Munday. 2012. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change 2:201–204, https://doi.org/10.1038/nclimate1352.

Nye, J.A., J.S. Link, J.A. Hare, and W.J. Overholtz. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Marine Ecology Progress Series 393:111–129, https://doi.org/10.3354/meps08220.

O’Connor, M.I., J.F. Bruno, S.D. Gaines, B.S. Halpern, S.E. Lester, B.P. Kinlan, and J.M. Weiss. 2007. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences of the United States of America 104:1,266–1,271, https://doi.org/10.1073/pnas.0603422104.

Pankhurst, N.W., and P.L. Munday. 2011. Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research 62:1,015–1,026, https://doi.org/10.1071/MF10269.

Paris, C.B., and R.K. Cowen. 2004. Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnology and Oceanography 49:1,964–1,979, https://doi.org/10.4319/lo.2004.49.6.1964.

Peck, M.A., K.B. Huebert, and J.K. Llopiz. 2012. Intrinsic and extrinsic factors driving match-mismatch dynamics during the early life history of marine fishes. Advances in Ecological Research 47:177–302, https://doi.org/10.1016/B978-0-12-398315-2.00003-X.

Peck, M.A., and M. Hufnagl. 2012. Can IBMs tell us why most larvae die in the sea? Model sensitivities and scenarios reveal research needs. Journal of Marine Systems 93:77–93, https://doi.org/10.1016/j.jmarsys.2011.08.005.

Peck, M.A., P. Reglero, M. Takahashi, and I.A. Catalán. 2013. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Progress in Oceanography 116:220–245, https://doi.org/10.1016/j.pocean.2013.05.012.

Pepin, P. 1991. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life-history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sciences 48:503–518, https://doi.org/10.1139/f91-065.

Perry, A.L., P.J. Low, J.R. Ellis, and J.D. Reynolds. 2005. Climate change and distribution shifts in marine fishes. Science 308:1,912–1,915, https://doi.org/10.1126/science.1111322.

Pimentel, M., M. Pegado, T. Repolho, and R. Rosa. 2014. Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. Marine Biology 161:725–729, https://doi.org/10.1007/s00227-013-2365-7.

Pineda, J., J.A. Hare, and S. Sponaungle. 2007. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20(3):22–39, https://doi.org/10.5670/oceanog.2007.27.

Pinsky, M.L., B. Worm, M.J. Fogarty, J.L. Sarmiento, and S.A. Levin. 2013. Marine taxa track local climate velocities. Science 341:1,239–1,242, https://doi.org/10.1126/science.1239352.

Platt, T., and K.T.F. Csar Fuentes-Yaco. 2003. Marine ecology: Spring algal bloom and larval fish survival. Nature 423:398–399, https://doi.org/10.1038/423398b.

Poloczanska, E.S., C.J. Brown, W.J. Sydeman, W. Kiessling, D.S. Schoeman, P.J. Moore, K. Brander, J.F. Bruno, L.B. Buckley, and M.T. Burrows. 2013. Global imprint of climate change on marine life. Nature Climate Change 3:919–925, https://doi.org/10.1038/nclimate1958.

Pope, E., R. Ellis, M. Scolamacchia, J. Scolding, A. Keay, P. Chingombe, R. Shields, R. Wilcox, D. Speirs, and R. Wilson. 2014. European sea bass, Dicentrarchus labrax, in a changing ocean. Biogeosciences 11:2,519–2,530, https://doi.org/10.5194/bg-11-2519-2014.

Pörtner, H.-O., and M. Peck. 2010. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. Journal of Fish Biology 77:1,745–1,779, https://doi.org/10.1111/j.1095-8649.2010.02783.x.

Rice, J., and H.I. Browman. 2014. Where has all the recruitment research gone, long time passing? ICES Journal of Marine Science 71:2,293–2,299, https://doi.org/10.1093/icesjms/fsu158.

Richardson, A.J. 2008. In hot water: Zooplankton and climate change. ICES Journal of Marine Science 65:279–295, https://doi.org/10.1093/icesjms/fsn028.

Rijnsdorp, A.D., M.A. Peck, G.H. Engelhard, C. Möllmann, and J.K. Pinnegar. 2009. Resolving the effect of climate change on fish populations. ICES Journal of Marine Science 66:1,570–1,583, https://doi.org/10.1093/icesjms/fsp056.

Rummer, J.L., C.S. Couturier, J.A. Stecyk, N.M. Gardiner, J.P. Kinch, G.E. Nilsson, and P.L. Munday. 2014. Life on the edge: Thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Global Change Biology 20:1,055–1,066, https://doi.org/10.1111/gcb.12455.

Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C. Wong, D.W. Wallace, and B. Tilbrook. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–371, https://doi.org/10.1126/science.1097403.

Secor, D. 2000. Longevity and resilience of Chesapeake Bay striped bass. ICES Journal of Marine Science 57:808–815, https://doi.org/10.1006/jmsc.2000.0560.

Shoji, J., S.-i. Toshito, K.-i. Mizuno, Y. Kamimura, M. Hori, and K. Hirakawa. 2011. Possible effects of global warming on fish recruitment: Shifts in spawning season and latitudinal distribution can alter growth of fish early life stages through changes in daylength. ICES Journal of Marine Science 68:1,165–1,169, https://doi.org/10.1093/icesjms/fsr059.

Siddon, E.C., T. Kristiansen, F.J. Mueter, K.K. Holsman, R.A. Heintz, and E.V. Farley. 2013. Spatial match-mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea. PLoS One 8(12):e84526, https://doi.org/10.1371/journal.pone.0084526.

Simpson, S.D., P.L. Munday, M.L. Wittenrich, R. Manassa, D.L. Dixson, M. Gagliano, and H.Y. Yan. 2011. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biology Letters 7:917–920, https://doi.org/10.1098/rsbl.2011.0293.

Sims, D.W., V.J. Wearmouth, M.J. Genner, A.J. Southward, and S.J. Hawkins. 2004. Low-temperature-driven early spawning migration of a temperate marine fish. Journal of Animal Ecology 73:333–341, https://doi.org/10.1111/j.0021-8790.2004.00810.x.

Sinclair, M. 1997. Prologue. Recruitment in fish populations: The paradigm shift generated by ICES Committee A. Pp. 1–27 in Early Life History and Recruitment in Fish Populations. Springer.

Sissenwine, M.P. 1984. Why do fish populations vary? Pp. 59–94 in Exploitation of Marine Communities, Dahlem Workshop Report, vol. 32. Springer, https://doi.org/10.1007/978-3-642-70157-3_3.

Søreide, J.E., E. Leu, J. Berge, M. Graeve, and S. Falk-Petersen. 2010. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Global Change Biology 16:3,154–3,163, https://doi.org/10.1111/j.1365-2486.2010.02175.x.

Sparks, T.H., and A. Menzel. 2002. Observed changes in seasons: An overview. International Journal of Climatology 22:1,715–1,725, https://doi.org/10.1002/joc.821.

Sponaugle, S., K. Grorud-Colvert, and D. Pinkard. 2006. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Marine Ecology Progress Series 308:1–15, http://www.int-res.com/abstracts/meps/v308/feature.

Sunday, J.M., P. Calosi, S. Dupont, P.L. Munday, J.H. Stillman, and T.B. Reusch. 2014. Evolution in an acidifying ocean. Trends in Ecology & Evolution 29:117–125, https://doi.org/10.1016/j.tree.2013.11.001.

Tewksbury, J.J., R.B. Huey, and C.A. Deutsch. 2008. Putting the heat on tropical animals. Science 320:1,296, https://doi.org/10.1126/science.1159328.

Tracey, S.R., K. Hartmann, and A.J. Hobday. 2012. The effect of dispersal and temperature on the early life history of a temperate marine fish. Fisheries Oceanography 21:336–347, https://doi.org/10.1111/j.1365-2419.2012.00628.x.

Treml, E.A., J.J. Roberts, Y. Chao, P.N. Halpin, H.P. Possingham, and C. Riginos. 2012. Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integrative and Comparative Biology 52:525–537, https://doi.org/10.1093/icb/ics101.

Vikebø, F., S. Sundby, B. Ådlandsvik, and O. Otterå. 2007. Impacts of a reduced thermohaline circulation on transport and growth of larvae and pelagic juveniles of Arcto-Norwegian cod (Gadus morhua). Fisheries Oceanography 16(3):216–228, https://doi.org/10.1111/j.1365-2419.2007.00427.x.

von Herbing, I.H. 2002. Effects of temperature on larval fish swimming performance: The importance of physics to physiology. Journal of Fish Biology 61:865–876, https://doi.org/10.1111/j.1095-8649.2002.tb01848.x.

Wang, M., J.E. Overland, and N.A. Bond. 2010. Climate projections for selected large marine ecosystems. Journal of Marine Systems 79:258–266, https://doi.org/10.1016/j.jmarsys.2008.11.028.

Wassmann, P., C.M. Duarte, S. Agusti, and M.K. Sejr. 2011. Footprints of climate change in the Arctic marine ecosystem. Global Change Biology 17:1,235–1,249, https://doi.org/10.1111/j.1365-2486.2010.02311.x.

Welch, M.J., S.-A. Watson, J.Q. Welsh, M.I. McCormick, and P.L. Munday. 2014. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nature Climate Change 4:1,086–1,089, https://doi.org/10.1038/nclimate2400.

Werner, F.E., R.K. Cowen, and C.B. Paris. 2007. Coupled biological and physical models: Present capabilities and necessary developments for future studies of population connectivity. Oceanography 20(3):54–69, https://doi.org/10.5670/oceanog.2007.29.

Wieland, K., A. Jarre-Teichmann, and K. Horbowa. 2000. Changes in the timing of spawning of Baltic cod: Possible causes and implications for recruitment. ICES Journal of Marine Science 57:452–464, https://doi.org/10.1006/jmsc.1999.0522.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.